共 50 条
Ni3S2/Cu-NiCo LDH heterostructure nanosheet arrays on Ni foam for electrocatalytic overall water splitting
被引:0
|作者:
Jia, Lina
[1
,2
]
Du, Gaohui
[1
]
Han, Di
[1
,2
]
Hao, Yawen
[1
,2
]
Zhao, Wenqi
[1
]
Fan, Yi
[1
,2
]
Su, Qingmei
[1
]
Ding, Shukai
[1
]
Xu, Bingshe
[1
]
机构:
[1] Shaanxi Univ Sci & Technol, Mat Inst Atom & Mol Sci, Xian 710021, Peoples R China
[2] Shaanxi Univ Sci & Technol, Sch Mat Sci & Engn, Xian 710021, Peoples R China
基金:
中国国家自然科学基金;
关键词:
LAYERED DOUBLE HYDROXIDE;
BIFUNCTIONAL ELECTROCATALYST;
HIGHLY EFFICIENT;
NANOWIRE ARRAYS;
OXYGEN;
SITES;
DESIGN;
ARCHITECTURE;
STABILITY;
VACANCIES;
D O I:
10.1039/d1ta08148a
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The development of highly efficient transition metal-based catalysts for overall water splitting is of extreme significance for promoting large-scale sustainable utilization of hydrogen energy and energy conversion. Herein, we report novel 3D Ni3S2/Cu-NiCo LDH heterostructure nanosheet arrays grown on nickel foam as a promising bifunctional electrocatalyst for the OER and HER. In this design, copper ions are firstly doped into NiCo LDH to tune the electronic structure and enhance the inherent activity of pristine LDH. Metallic Ni3S2 is then introduced to establish a coupling heterostructure interface with Cu-NiCo LDH to boost the conductivity and activity. The incorporation of Cu ions and Ni3S2 into NiCo LDH also creates more active sites through crystal structure disorder and interface defects. Moreover, the 3D hierarchical nanosheet arrays can accelerate the electrolyte diffusion, promote the rapid release of gas bubbles, and ensure fast electron/mass transport along with strong electrochemical stability. All these merits endow the materials with a superior overall water splitting ability in an alkaline environment, showing low overpotentials of 119 and 218 mV for the OER and overpotentials of 156 and 304 mV for the HER at 10 and 100 mA cm(-2), respectively. Furthermore, the overall water electrolytic cell using Ni3S2/Cu-NiCo LDH as both electrodes can reach 100 mA cm(-2) at 1.75 V with outstanding durability. This study provides a new strategy and insights for the exploration of high activity non-noble metal catalysts for overall water splitting.
引用
收藏
页码:27639 / 27650
页数:12
相关论文