Enhancing Critical Current Density of Bulk MgB2 via Nanoscale Boron and Dy2O3 Doping

被引:9
|
作者
Miryala, Muralidhar [1 ]
Kitamoto, Kotaro [1 ]
Arvapalli, Sai Srikanth [1 ]
Das, Dhruba [2 ,3 ]
Jirsa, Milos [4 ]
Murakami, Masato [1 ]
Mamidanna, Sri Ramachandra Rao [2 ,3 ]
机构
[1] SIT, Mat Energy & Environm Lab, Superconducting Mat Grp, Grad Sch Engn & Sci, 3-7-5 Toyosu, Tokyo 1358548, Japan
[2] Indian Inst Technol Madras, Dept Phys, Quantum Ctr Diamond & Emergent Mat QuCenDiEM Grp, Nano Funct Mat Technol Ctr, Chennai 600036, Tamil Nadu, India
[3] Indian Inst Technol Madras, Mat Sci Res Ctr, Chennai 600036, Tamil Nadu, India
[4] Inst Phys, Na Slovance 2, CZ-18221 Prague 8, Czech Republic
关键词
critical current density (J(c)); Dy2O3; doping; flux pinning; MgB2; nanoscale boron; Raman spectroscopy; CARBON-ENCAPSULATED BORON; SUPERCONDUCTING PROPERTIES; IRREVERSIBILITY FIELD; CO-ADDITION; ENHANCEMENT;
D O I
10.1002/adem.202200487
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Moderate critical current density (J(c)) has been a long-lasting problem in bulk MgB2 superconductors. We show a certain increment in J(c) of bulk MgB2 via the use of amorphous boron precursor together with Dy2O3 doping. Dy2O3 dopant concentration varies from 0 to 2 wt%. X-Ray diffraction (XRD) shows the formation of DyB4 particles. The critical temperature (T-c) is not affected by Dy2O3 doping and stands close to 38 K, showing that there is no Dy interaction with the MgB2 lattice. Microstructural studies show nanometer-sized MgB2 grains. A high self-field J(c) of around 380 kA cm(-2) is achieved at 20 K within the Dy2O3 doping range of 0.5-1.5 wt%. At around 1 wt% Dy2O3 doping an improved high-field performance, 90 kA cm(-2) at 2 T, 20 K, is observed. In the flux pinning diagram, 1 wt% Dy2O3 doping caused a peak shift from 0.19 (0 wt%) to 0.23. This indicates secondary pinning by DyB4 and lattice strains. Raman studies show the increase in the phonon density of states (PDOS) with increasing Dy2O3 doping.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Strong influence of boron precursor powder on the critical current density of MgB2
    Chen, SK
    Yates, KA
    Blamire, MG
    MacManus-Driscoll, JL
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2005, 18 (11): : 1473 - 1477
  • [22] Improvement of critical current density in MgB2 by Ti, Zr and Hf doping
    Goto, D
    Machi, T
    Zhao, Y
    Koshizuka, N
    Murakami, M
    Arai, S
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 2003, 392 : 272 - 275
  • [23] Improvement of critical current density in MgB2 by Ti, Zr and Hf doping
    Goto, D. (dgto@istec.or.jp), 1600, (Elsevier): : 392 - 396
  • [24] The Critical Current Density of Polycrystalline MgB2 Prepared by Using Boron Mixture
    Chen, Soo K.
    MacManus-Driscoll, Judith L.
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2009, 19 (03) : 2771 - 2774
  • [25] Strong pinning enhancement in MgB2 using very small Dy2O3 additions
    Chen, S. K.
    Wei, M.
    MacManus-Driscoll, J. L.
    APPLIED PHYSICS LETTERS, 2006, 88 (19)
  • [26] Modelling of Critical Current Density of Sintered Ag Added Bulk MgB2
    Santosh, M.
    ACTA PHYSICA POLONICA A, 2016, 129 (06) : 1197 - 1200
  • [27] Microstructure and critical current of bulk MgB2 superconductor
    Krinitsina, T. P.
    Kuznetsova, E. I.
    Blinova, Y. V.
    Degtyarev, M. V.
    VII EURO-ASIAN SYMPOSIUM TRENDS IN MAGNETISM, 2019, 1389
  • [28] Microstructure and critical current density in MgB2 bulk made of 4.5 wt% carbon-coated boron
    Higuchi, M.
    Muralidhar, M.
    Jirsa, M.
    Murakami, M.
    29TH INTERNATIONAL SYMPOSIUM ON SUPERCONDUCTIVITY, 2017, 871
  • [29] Control of nano carbon substitution for enhancing the critical current density in MgB2
    Yeoh, W. K.
    Kim, J. H.
    Horvat, J.
    Xu, X.
    Qin, M. J.
    Dou, S. X.
    Jiang, C. H.
    Nakane, T.
    Kumakura, H.
    Munroe, P.
    SUPERCONDUCTOR SCIENCE & TECHNOLOGY, 2006, 19 (06): : 596 - 599
  • [30] High critical current densities in bulk MgB2 fabricated using amorphous boron
    Muralidhar, Miryala
    Kenta, Nozaki
    Koblischka, Michael R.
    Murakami, Masato
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2015, 212 (10): : 2141 - 2145