Regularity of multifractional moving average processes with random Hurst exponent

被引:6
|
作者
Loboda, Dennis [1 ]
Mies, Fabian [1 ]
Steland, Ansgar [1 ]
机构
[1] Rhein Westfal TH Aachen, Inst Stat, Wullnerstr 3, D-52062 Aachen, Germany
关键词
Multifractional Brownian motion; Random Holder exponent; Matern process; Local self-similarity; Random field; BROWNIAN-MOTION; STOCHASTIC-MODELS; FRACTAL DIMENSION; INTEGRATION;
D O I
10.1016/j.spa.2021.05.008
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A recently proposed alternative to multifractional Brownian motion (mBm) with random Hurst exponent is studied, which we refer to as Ito-mBm. It is shown that Ito-mBm is locally self-similar. In contrast to mBm, its pathwise regularity is almost unaffected by the roughness of the functional Hurst parameter. The pathwise properties are established via a new polynomial moment condition similar to the Kolmogorov-Centsov theorem, allowing for random local Holder exponents. Our results are applicable to a broad class of moving average processes where pathwise regularity and long memory properties may be decoupled, e.g. to a multifractional generalization of the Matern process. (C) 2021 Published by Elsevier B.V.
引用
收藏
页码:21 / 48
页数:28
相关论文
共 50 条
  • [1] Moving average Multifractional Processes with Random Exponent: Lower bounds for local oscillations
    Ayache, Antoine
    Bouly, Florent
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2022, 146 : 143 - 163
  • [2] Multifractional processes with random exponent
    Ayache, A
    Taqqu, MS
    [J]. PUBLICACIONS MATEMATIQUES, 2005, 49 (02) : 459 - 486
  • [3] Continuous Gaussian Multifractional Processes with Random Pointwise Holder Regularity
    Ayache, Antoine
    [J]. JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (01) : 72 - 93
  • [4] Continuous Gaussian Multifractional Processes with Random Pointwise Hölder Regularity
    Antoine Ayache
    [J]. Journal of Theoretical Probability, 2013, 26 : 72 - 93
  • [5] Multifractional Brownian motion characterization based on Hurst exponent estimation and statistical learning
    Szarek, Dawid
    Jablonski, Ireneusz
    Krapf, Diego
    Wylomanska, Agnieszka
    [J]. CHAOS, 2022, 32 (08)
  • [6] Hurst exponent analysis of moving metallic surfaces
    Soares, H. C.
    da Silva, L.
    Lobao, D. C.
    Caetano, D. P.
    Huguenin, J. A. O.
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2013, 392 (21) : 5307 - 5312
  • [7] Regularity and identification of generalized multifractional Gaussian processes
    Ayache, A
    Benassi, A
    Cohen, S
    Véhel, JL
    [J]. SEMINAIRE DE PROBABILITIES XXXVIII, 2005, 1857 : 290 - 312
  • [8] Tracking performance and robustness analysis of Hurst estimators for multifractional processes
    Sheng, H.
    Chen, Y. Q.
    Qiu, T. S.
    [J]. IET SIGNAL PROCESSING, 2012, 6 (03) : 213 - 226
  • [9] Can the bivariate Hurst exponent be higher than an average of the separate Hurst exponents?
    Kristoufek, Ladislav
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 431 : 124 - 127
  • [10] Nonparametric estimation of the local Hurst function of multifractional Gaussian processes
    Bardet, Jean-Marc
    Surgailis, Donatas
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2013, 123 (03) : 1004 - 1045