Hurst exponent analysis of moving metallic surfaces

被引:10
|
作者
Soares, H. C. [1 ]
da Silva, L. [2 ]
Lobao, D. C. [1 ,3 ]
Caetano, D. P. [3 ]
Huguenin, J. A. O. [1 ,2 ]
机构
[1] Univ Fed Fluminense, Programa Posgrad Modelagem Computac Ciencia & Tec, BR-27255125 Volta Redonda, RJ, Brazil
[2] Univ Fed Fluminense, Inst Ciencias Exatas, Dept Fis, BR-27213415 Volta Redonda, RJ, Brazil
[3] Univ Fed Fluminense, Dept Ciencias Exatas, BR-27255125 Volta Redonda, RJ, Brazil
关键词
Hurst exponent; Dynamical speckle pattern; Rough surfaces; DIGITAL SPECKLE PATTERNS; TIME-SERIES; ROUGHNESS; INTENSITY;
D O I
10.1016/j.physa.2013.07.005
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We report on the application of Hurst exponent analysis to digital speckle patterns for investigating moving rough surfaces in the presence of defects. Digital speckle patterns were generated by recording the scattered light from moving surfaces illuminated by a laser beam. It was found that it is possible to identify the presence of the defects by means of the variation of the Hurst exponent along the sample. (C) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:5307 / 5312
页数:6
相关论文
共 50 条
  • [1] Hurst exponent determination for digital speckle patterns in roughness control of metallic surfaces
    Sampaio, A. L.
    Lobao, D. C.
    Nunes, L. C. S.
    dos Santos, P. A. M.
    Silva, L.
    Huguenin, J. A. O.
    [J]. OPTICS AND LASERS IN ENGINEERING, 2011, 49 (01) : 32 - 35
  • [2] Hurst exponent estimation of fractional surfaces for mammogram images analysis
    Dlask, Martin
    Kukal, Jaromir
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2022, 585
  • [3] Regularity of multifractional moving average processes with random Hurst exponent
    Loboda, Dennis
    Mies, Fabian
    Steland, Ansgar
    [J]. STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2021, 140 : 21 - 48
  • [4] Electromagnetic scattering on fractional Brownian surfaces and estimation of the Hurst exponent
    Guérin, CA
    Saillard, M
    [J]. INVERSE PROBLEMS, 2001, 17 (03) : 365 - 386
  • [5] HURST EXPONENT ESTIMATION FOR MOVING FRACTAL OBJECT BY MAXIMUM LIKELIHOOD METHOD
    Parshin, Alexander
    [J]. 2014 24TH INTERNATIONAL CRIMEAN CONFERENCE MICROWAVE & TELECOMMUNICATION TECHNOLOGY (CRIMICO), 2014, : 1127 - 1128
  • [6] Hurst Exponent Analysis of Financial Time Series
    SANG Hong wei
    [J]. Advances in Manufacturing, 2001, (04) : 269 - 272
  • [7] Evaluating the Efficient Market Hypothesis by means of isoquantile surfaces and the Hurst exponent
    Ivankova, Kristyna
    Kristoufek, Ladislav
    Vosvrda, Miloslav
    [J]. PROCEEDINGS OF THE 29TH INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2011, PTS I AND II, 2011, : 300 - 305
  • [8] Comment on Hurst exponent
    Kärner, O
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2001, 28 (19) : 3825 - 3826
  • [9] Time and scale Hurst exponent analysis for financial markets
    Matos, Jose A. O.
    Gama, Silvio M. A.
    Ruskin, Heather J.
    Al Sharkasi, Adel
    Crane, Martin
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2008, 387 (15) : 3910 - 3915
  • [10] Surrogate multivariate Hurst exponent analysis of gait dynamics
    Marin-Lopez, A.
    Martinez-Cadena, J. A.
    Martinez-Martinez, F.
    Alvarez-Ramirez, J.
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 172