GLOBAL PARAMETRIZATION OF THE INVARIANT MANIFOLD DEFINING NONLINEAR NORMAL MODES USING THE KOOPMAN OPERATOR

被引:0
|
作者
Cirillo, Giuseppe I. [1 ]
Mauroy, Alexandre [1 ]
Renson, Ludovic [2 ]
Kerschen, Gaetan [2 ]
Sepulchre, Rodolphe [3 ]
机构
[1] Univ Liege, Syst & Modeling Res Grp, Dept Elect Engn & Comp Sci, Liege, Belgium
[2] Univ Liege, Space Struct & Syst Lab S3L, Dept Aerosp & Mech Engn, Liege, Belgium
[3] Univ Cambridge, Control Grp, Dept Engn, Cambridge, England
关键词
SPECTRAL PROPERTIES; SYSTEMS; FLOWS;
D O I
暂无
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Nonlinear normal modes of vibration have been the focus of many studies during the past years and different characterizations of them have been proposed. The present work focuses on damped systems, and considers nonlinear normal mode motions as trajectories lying on an invariant manifold, following the geometric approach of Shaw and Pierre. We provide a novel characterization of the invariant manifold, that rests on the spectral theory of the Koopman operator. A main advantage of the proposed approach is a global parametrization of the manifold, which avoids folding issues arising with the use of displacement velocity coordinates.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Data-driven moving horizon state estimation of nonlinear processes using Koopman operator
    Yin, Xunyuan
    Qin, Yan
    Liu, Jinfeng
    Huang, Biao
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2023, 200 : 481 - 492
  • [22] Global Nonlinear Normal Modes in the Fullerene Molecule C60
    Garcia-Azpeitia, Carlos
    Krawcewicz, Wieslaw
    Tejada-Wriedt, Manuel
    Wu, Haopin
    SIAM JOURNAL ON APPLIED DYNAMICAL SYSTEMS, 2021, 20 (01): : 94 - 129
  • [23] Dynamic testing of nonlinear vibrating structures using nonlinear normal modes
    Peeters, M.
    Kerschen, G.
    Golinval, J. C.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (03) : 486 - 509
  • [24] Bayesian model updating of nonlinear systems using nonlinear normal modes
    Song, Mingming
    Renson, Ludovic
    Noel, Jean-Philippe
    Moaveni, Babak
    Kerschen, Gaetan
    STRUCTURAL CONTROL & HEALTH MONITORING, 2018, 25 (12):
  • [25] Component mode synthesis using nonlinear normal modes
    Apiwattanalunggarn, P
    Shaw, S
    Pierre, C
    NONLINEAR DYNAMICS, 2005, 41 (1-3) : 17 - 46
  • [26] Learning model predictive control of nonlinear systems with time-varying parameters using Koopman operator
    Chen, Zhong
    Chen, Xiaofang
    Liu, Jinping
    Cen, Lihui
    Gui, Weihua
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 470
  • [27] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [28] Nonlinear System Identification of Tremors Dynamics: A Data-driven Approximation Using Koopman Operator Theory
    Xue, Xiangming
    Iyer, Ashwin
    Roque, Daniel
    Sharma, Nitin
    2023 11TH INTERNATIONAL IEEE/EMBS CONFERENCE ON NEURAL ENGINEERING, NER, 2023,
  • [29] Component Mode Synthesis Using Nonlinear Normal Modes
    Polarit Apiwattanalunggarn
    Steven W. Shaw
    Christophe Pierre
    Nonlinear Dynamics, 2005, 41 : 17 - 46
  • [30] USING NONLINEAR NORMAL MODES TO ANALYZE FORCED VIBRATIONS
    Avramov, K. V.
    INTERNATIONAL APPLIED MECHANICS, 2008, 44 (12) : 1405 - 1412