Attention-Based Parallel Multiscale Convolutional Neural Network for Visual Evoked Potentials EEG Classification

被引:19
|
作者
Gao, Zhongke [1 ,2 ]
Sun, Xinlin [1 ]
Liu, Mingxu [1 ]
Dang, Weidong [1 ]
Ma, Chao [1 ]
Chen, Guanrong [3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Minist Educ, Tianjin 300350, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Electroencephalography; Feature extraction; Fatigue; Visualization; Convolutional neural networks; Brain modeling; Attention mechanism; brain-computer interface (BCI); convolutional neural network; fatigue; visual evoked potentials; CANONICAL CORRELATION-ANALYSIS; SSVEP;
D O I
10.1109/JBHI.2021.3059686
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalography (EEG) decoding is an important part of Visual Evoked Potentials-based Brain-Computer Interfaces (BCIs), which directly determines the performance of BCIs. However, long-time attention to repetitive visual stimuli could cause physical and psychological fatigue, resulting in weaker reliable response and stronger noise interference, which exacerbates the difficulty of Visual Evoked Potentials EEG decoding. In this state, subjects' attention could not be concentrated enough and the frequency response of their brains becomes less reliable. To solve these problems, we propose an attention-based parallel multiscale convolutional neural network (AMS-CNN). Specifically, the AMS-CNN first extract robust temporal representations via two parallel convolutional layers with small and large temporal filters respectively. Then, we employ two sequential convolution blocks for spatial fusion and temporal fusion to extract advanced feature representations. Further, we use attention mechanism to weight the features at different moments according to the output-related interest. Finally, we employ a full connected layer with softmax activation function for classification. Two fatigue datasets collected from our lab are implemented to validate the superior classification performance of the proposed method compared to the state-of-the-art methods. Analysis reveals the competitiveness of multiscale convolution and attention mechanism. These results suggest that the proposed framework is a promising solution to improving the decoding performance of Visual Evoked Potential BCIs.
引用
收藏
页码:2887 / 2894
页数:8
相关论文
共 50 条
  • [21] Attention-Based Interpretable Multiscale Graph Neural Network for MOFs
    Li, Lujun
    Yu, Haibin
    Wang, Zhuo
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2025, 21 (03) : 1369 - 1381
  • [22] Scene Classification Based on Multiscale Convolutional Neural Network
    Liu, Yanfei
    Zhong, Yanfei
    Qin, Qianqing
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (12): : 7109 - 7121
  • [23] Attention-based convolutional neural network for deep face recognition
    Hefei Ling
    Jiyang Wu
    Junrui Huang
    Jiazhong Chen
    Ping Li
    Multimedia Tools and Applications, 2020, 79 : 5595 - 5616
  • [24] Attention-based convolutional neural network for Bangla sentiment analysis
    Sadia Sharmin
    Danial Chakma
    AI & SOCIETY, 2021, 36 : 381 - 396
  • [25] Attention-based convolutional neural network for Bangla sentiment analysis
    Sharmin, Sadia
    Chakma, Danial
    AI & SOCIETY, 2021, 36 (01) : 381 - 396
  • [26] An Attention-Based Convolutional Neural Network for Intrusion Detection Model
    Wang, Zhen
    Ghaleb, Fuad A. A.
    IEEE ACCESS, 2023, 11 : 43116 - 43127
  • [27] A global attention-based convolutional neural network for process prediction
    Chen, Yunfan
    Xing, Mali
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 7373 - 7377
  • [28] Attention-Based Convolutional Neural Network for Pavement Crack Detection
    Wan, Haifeng
    Gao, Lei
    Su, Manman
    Sun, Qirun
    Huang, Lei
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2021, 2021
  • [29] Attention-based convolutional neural network for deep face recognition
    Ling, Hefei
    Wu, Jiyang
    Huang, Junrui
    Chen, Jiazhong
    Li, Ping
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (9-10) : 5595 - 5616
  • [30] A classification method for EEG motor imagery signals based on parallel convolutional neural network
    Han, Yuexing
    Wang, Bing
    Luo, Jie
    Li, Long
    Li, Xiaolong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2022, 71