Attention-Based Parallel Multiscale Convolutional Neural Network for Visual Evoked Potentials EEG Classification

被引:19
|
作者
Gao, Zhongke [1 ,2 ]
Sun, Xinlin [1 ]
Liu, Mingxu [1 ]
Dang, Weidong [1 ]
Ma, Chao [1 ]
Chen, Guanrong [3 ]
机构
[1] Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
[2] Minist Educ, Tianjin 300350, Peoples R China
[3] City Univ Hong Kong, Dept Elect Engn, Kowloon, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
Convolution; Electroencephalography; Feature extraction; Fatigue; Visualization; Convolutional neural networks; Brain modeling; Attention mechanism; brain-computer interface (BCI); convolutional neural network; fatigue; visual evoked potentials; CANONICAL CORRELATION-ANALYSIS; SSVEP;
D O I
10.1109/JBHI.2021.3059686
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalography (EEG) decoding is an important part of Visual Evoked Potentials-based Brain-Computer Interfaces (BCIs), which directly determines the performance of BCIs. However, long-time attention to repetitive visual stimuli could cause physical and psychological fatigue, resulting in weaker reliable response and stronger noise interference, which exacerbates the difficulty of Visual Evoked Potentials EEG decoding. In this state, subjects' attention could not be concentrated enough and the frequency response of their brains becomes less reliable. To solve these problems, we propose an attention-based parallel multiscale convolutional neural network (AMS-CNN). Specifically, the AMS-CNN first extract robust temporal representations via two parallel convolutional layers with small and large temporal filters respectively. Then, we employ two sequential convolution blocks for spatial fusion and temporal fusion to extract advanced feature representations. Further, we use attention mechanism to weight the features at different moments according to the output-related interest. Finally, we employ a full connected layer with softmax activation function for classification. Two fatigue datasets collected from our lab are implemented to validate the superior classification performance of the proposed method compared to the state-of-the-art methods. Analysis reveals the competitiveness of multiscale convolution and attention mechanism. These results suggest that the proposed framework is a promising solution to improving the decoding performance of Visual Evoked Potential BCIs.
引用
收藏
页码:2887 / 2894
页数:8
相关论文
共 50 条
  • [1] Attention-Based Convolutional Neural Network for Earthquake Event Classification
    Ku, Bonhwa
    Kim, Gwantae
    Ahn, Jae-Kwang
    Lee, Jimin
    Ko, Hanseok
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (12) : 2057 - 2061
  • [2] An Attention-Based Convolutional Neural Network for Acute Lymphoblastic Leukemia Classification
    Ullah, Muhammad Zakir
    Zheng, Yuanjie
    Song, Jingqi
    Aslam, Sehrish
    Xu, Chenxi
    Kiazolu, Gogo Dauda
    Wang, Liping
    APPLIED SCIENCES-BASEL, 2021, 11 (22):
  • [3] An Attention-Based Wavelet Convolution Neural Network for Epilepsy EEG Classification
    Xin, Qi
    Hu, Shaohai
    Liu, Shuaiqi
    Zhao, Ling
    Zhang, Yu-Dong
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2022, 30 : 957 - 966
  • [4] EEG emotion recognition using attention-based convolutional transformer neural network
    Gong, Linlin
    Li, Mingyang
    Zhang, Tao
    Chen, Wanzhong
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2023, 84
  • [5] A Visual Attention Based Convolutional Neural Network for Image Classification
    Chen, Yaran
    Zhao, Dongbin
    Lv, Le
    Li, Chengdong
    PROCEEDINGS OF THE 2016 12TH WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION (WCICA), 2016, : 764 - 769
  • [6] Attention-Based Multiscale Spatial-Temporal Convolutional Network for Motor Imagery EEG Decoding
    Zhang, Yu
    Li, Penghai
    Cheng, Longlong
    Li, Mingji
    Li, Hongji
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2024, 70 (01) : 2423 - 2434
  • [7] Attention-based Convolutional Neural Networks for Sentence Classification
    Zhao, Zhiwei
    Wu, Youzheng
    17TH ANNUAL CONFERENCE OF THE INTERNATIONAL SPEECH COMMUNICATION ASSOCIATION (INTERSPEECH 2016), VOLS 1-5: UNDERSTANDING SPEECH PROCESSING IN HUMANS AND MACHINES, 2016, : 705 - 709
  • [8] Multivariate Time Series Classification With An Attention-Based Multivariate Convolutional Neural Network
    Tripathi, Achyut Mani
    Baruah, Rashmi Dutta
    2020 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2020,
  • [9] Handwritten/Printed Receipt Classification using Attention-Based Convolutional Neural Network
    Yang, Fan
    Jin, Lianwen
    Yang, Weixin
    Feng, Ziyong
    Zhang, Shuye
    PROCEEDINGS OF 2016 15TH INTERNATIONAL CONFERENCE ON FRONTIERS IN HANDWRITING RECOGNITION (ICFHR), 2016, : 384 - 389
  • [10] Multiscale Convolutional Attention-based Residual Network Expression Recognition
    Wang, Fei
    Zhang, Haijun
    JOURNAL OF INTERNET TECHNOLOGY, 2023, 24 (05): : 1169 - 1175