The sum of the squares of degrees: Sharp asymptotics

被引:24
|
作者
Nikiforov, Vladimir [1 ]
机构
[1] Univ Memphis, Dept Math Sci, Memphis, TN 38152 USA
关键词
squares of degrees; de Caen's bound;
D O I
10.1016/j.disc.2007.03.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f (n, m) be the maximum of the sum of the squares of degrees of a graph with n vertices and ill edges. Summarizing earlier research, we present a concise, asymptotically sharp upper bound on f (n, m), better than the bound of de Caen for almost all n and m. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:3187 / 3193
页数:7
相关论文
共 50 条
  • [31] Asymptotics of degrees and ED degrees of Segre products
    Ottaviani, Giorgio
    Sodomaco, Luca
    Ventura, Emanuele
    ADVANCES IN APPLIED MATHEMATICS, 2021, 130
  • [32] SUM OF 3 SQUARES
    PRIELIPP, B
    FIBONACCI QUARTERLY, 1986, 24 (03): : 281 - 282
  • [33] SUM OF 2 SQUARES
    LORD, G
    FIBONACCI QUARTERLY, 1986, 24 (03): : 280 - 280
  • [34] Sum of three squares
    Seiffert, HJ
    FIBONACCI QUARTERLY, 1996, 34 (02): : 183 - 184
  • [35] Sum of squares of deviations
    Bukac, Josef
    Sulc, Jakub
    TEACHING STATISTICS, 2020, 42 (01) : 30 - 31
  • [36] SUM OF CONSECUTIVE SQUARES
    BRUCKMAN, PS
    FIBONACCI QUARTERLY, 1984, 22 (01): : 87 - 88
  • [37] Indivisibility of the sum of squares
    Avidon, Michael R.
    AMERICAN MATHEMATICAL MONTHLY, 2007, 114 (03): : 266 - 266
  • [38] SUM OF SQUARES OF DIGITS
    BUTLER, E
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (06): : 401 - 401
  • [39] SUM OF SQUARES OF DIGITS
    ROSENFELD, A
    FINE, NJ
    AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (09): : 1042 - &
  • [40] On the sum of squares of eccentricity
    Wen, Shu
    UTILITAS MATHEMATICA, 2012, 88 : 259 - 266