Root colonization and effect of biocontrol fungus Paecilomyces lilacinus on composition of ammonia-oxidizing bacteria, ammonia-oxidizing archaea and fungal populations of tomato rhizosphere

被引:15
|
作者
Yu, Zhen [1 ,2 ]
Zhang, Youchi [1 ,2 ]
Luo, Wensui [1 ]
Wang, Yin [1 ]
机构
[1] Chinese Acad Sci, Inst Urban Environm, Xiamen 361021, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Paecilomyces lilacinus; Colonization; Ammonia oxidizers; Fungal community composition; MELOIDOGYNE-INCOGNITA; COMMUNITY STRUCTURE; QUANTITATIVE-ANALYSES; MICROBIAL DIVERSITY; BIOLOGICAL-CONTROL; SPECIES RICHNESS; SOIL; PLANT; EFFICACY; GROWTH;
D O I
10.1007/s00374-014-0983-y
中图分类号
S15 [土壤学];
学科分类号
0903 ; 090301 ;
摘要
This study investigated the effects of root-knot nematode biocontrol agent Paecilomyces lilacinus (P. lilacinus) strain PL1210 on ammonia-oxidizing microorganisms and fungal community composition of tomato rhizosphere. The exchangeable NH4 (+)-N and NO3 (-)-N contents were lower in inoculated soils than in the control during 60 days of incubation. Real-time quantitative polymerase chain reaction (qPCR) detected stable colonization of P. lilacinus in the tomato rhizosphere and significant inhibition of ammonia-oxidizing bacteria (AOB) and archaea (AOA), which could be responsible for the decrease of NO3 (-)-N content in soil. PCR-denaturing gradient gel electrophoresis (DGGE) analysis demonstrated no significant difference in soil fungal community composition associated with the application of P. lilacinus as shown by Shannon-Wiener diversity index (H') and Margalef index (D). Cluster analysis showed that the composition of rhizosphere fungal community was more significantly influenced by time-related differences than by the inoculation of biocontrol agents.
引用
收藏
页码:343 / 351
页数:9
相关论文
共 50 条
  • [31] Ammonia-oxidizing archaea and ammonia-oxidizing bacteria communities respond differently in oxy-gen-limited habitats
    Du, Jialin
    Meng, Lin
    Qiu, Mingsheng
    Chen, Shuaiwei
    Zhang, Binghui
    Song, Wenjing
    Cong, Ping
    Zheng, Xuebo
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [32] Affinity informs environmental cooperation between ammonia-oxidizing archaea (AOA) and anaerobic ammonia-oxidizing (Anammox) bacteria
    Levi L. Straka
    Kelley A. Meinhardt
    Annette Bollmann
    David A. Stahl
    Mari-K. H. Winkler
    The ISME Journal, 2019, 13 : 1997 - 2004
  • [33] Ammonia-oxidizing archaea have better adaptability in oxygenated/hypoxic alternant conditions compared to ammonia-oxidizing bacteria
    Shuai Liu
    Baolan Hu
    Zhanfei He
    Bin Zhang
    Guangming Tian
    Ping Zheng
    Fang Fang
    Applied Microbiology and Biotechnology, 2015, 99 : 8587 - 8596
  • [34] Inhibition of ammonia-oxidizing bacteria promotes the growth of ammonia-oxidizing archaea in ammonium-rich alkaline soils
    Chang YIN
    Xiaoping FAN
    Hao CHEN
    Mujun YE
    Guochao YAN
    Tingqiang LI
    Hongyun PENG
    Shengzhe E
    Zongxian CHE
    Steven A.WAKELIN
    Yongchao LIANG
    Pedosphere, 2022, (04) : 532 - 542
  • [35] Manure fertilization alters the population of ammonia-oxidizing bacteria rather than ammonia-oxidizing archaea in a paddy soil
    Wang, Yu
    Zhu, Guibing
    Song, Liyan
    Wang, Shanyun
    Yin, Chengqing
    JOURNAL OF BASIC MICROBIOLOGY, 2014, 54 (03) : 190 - 197
  • [36] Review of ammonia-oxidizing bacteria and archaea in freshwater ponds
    Lu, Shimin
    Liu, Xingguo
    Liu, Chong
    Wang, Xiaodong
    Cheng, Guofeng
    REVIEWS IN ENVIRONMENTAL SCIENCE AND BIO-TECHNOLOGY, 2019, 18 (01) : 1 - 10
  • [37] A review of ammonia-oxidizing bacteria and archaea in Chinese soils
    Shen, Ju-Pei
    Zhang, Li-Mei
    Di, Hong J.
    He, Ji-Zheng
    FRONTIERS IN MICROBIOLOGY, 2012, 3
  • [38] Ammonia-oxidizing bacteria and archaea in sediments of the Gulf of Mexico
    Flood, Matthew
    Frabutt, Dylan
    Floyd, Dalton
    Powers, Ashley
    Ezegwe, Uche
    Devol, Allan
    Tiquia-Arashiro, Sonia M.
    ENVIRONMENTAL TECHNOLOGY, 2015, 36 (01) : 124 - 135
  • [39] Ammonia-oxidizing archaea have more important role than ammonia-oxidizing bacteria in ammonia oxidation of strongly acidic soils
    Zhang, Li-Mei
    Hu, Hang-Wei
    Shen, Ju-Pei
    He, Ji-Zheng
    ISME JOURNAL, 2012, 6 (05): : 1032 - 1045
  • [40] Review of ammonia-oxidizing bacteria and archaea in freshwater ponds
    Shimin Lu
    Xingguo Liu
    Chong Liu
    Xiaodong Wang
    Guofeng Cheng
    Reviews in Environmental Science and Bio/Technology, 2019, 18 : 1 - 10