Design of an Atmospheric Water Generator: Harvesting Water Out of Thin Air

被引:0
|
作者
Pontious, Kiara [1 ]
Weidner, Brad [1 ]
Guerin, Nima [1 ]
Dates, Andrew [1 ]
Pierrakos, Olga [1 ]
Altaii, Karim [2 ]
机构
[1] James Madison Univ, Dept Engn, Harrisonburg, VA 22807 USA
[2] James Madison Univ, Dept Integrated Sci & Technol, Harrisonburg, VA 22807 USA
关键词
Atmospheric Water Generators; phase change; and water stress;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Water scarcity affects 1.2 billion people on a global scale, representing nearly one fifth of the human population. In some regions, current water sources are being depleted faster than they are renewed and the majority of this depletion is being used for irrigation and agricultural purposes. At any given time, the atmosphere contains 3400 trillion gallons of water vapor, which would be enough to cover the entire Earth in 1 inch of water. Herein, we describe the design of an innovative solution to water scarcity in regions with medium to high humidity - Atmospheric Water Generators (AWG). This device converts water vapor into liquid water and is designed for agricultural and irrigation purposes in regions where water scarcity exists. More specifically, two AWG concepts were developed by our team, one utilizing Peltier devices and the other a heat exchanger, in order to allow multiple design alternatives to be considered. The Peltier-based concept works by applying current to induce a temperature gradient in order to cool and condense the surrounding air. The heat exchanger concept works by cycling a coolant that is cooled by a lower ground temperature. Both AWG concepts were designed utilizing sustainable engineering principles to minimize energy consumption and cost (particularly when compared to AWGs currently on the market). The designs are estimated to create enough water daily to grow 2 fruit trees (1 gallon a week) at an example test condition of 60% relative humidity and 85 degrees F.
引用
下载
收藏
页码:6 / 11
页数:6
相关论文
共 50 条
  • [31] Polyzwitterionic Hydrogels for Efficient Atmospheric Water Harvesting
    Lei, Chuxin
    Guo, Youhong
    Guan, Weixin
    Lu, Hengyi
    Shi, Wen
    Yu, Guihua
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (13)
  • [32] Adsorption-based atmospheric water harvesting
    Ejeian, M.
    Wang, R. Z.
    JOULE, 2021, 5 (07) : 1678 - 1703
  • [33] Multivariate MOF for optimizing atmospheric water harvesting
    Ma, Ao
    Cong, Hengjiang
    Deng, Hexiang
    Green Energy and Environment, 2022, 7 (04): : 575 - 577
  • [34] Hydrogels and hydrogel derivatives for atmospheric water harvesting
    Lyu, Tong
    Han, Yixuan
    Chen, Zhaojun
    Fan, Xiangchao
    Tian, Ye
    MATERIALS TODAY SUSTAINABILITY, 2024, 25
  • [35] The minimum work requirements for atmospheric water harvesting
    Swanson, Richard M.
    HELIYON, 2023, 9 (06)
  • [36] Review of sustainable methods for atmospheric water harvesting
    Jarimi, Hasila
    Powell, Richard
    Riffat, Saffa
    INTERNATIONAL JOURNAL OF LOW-CARBON TECHNOLOGIES, 2020, 15 (02) : 253 - 276
  • [37] Mass transfer in atmospheric water harvesting systems
    Lassitter, Thomas
    Hanikel, Nikita
    Coyle, Dennis J.
    Hossain, Mohammad I.
    Lipinski, Bryce
    O'Brien, Michael
    Hall, David B.
    Hastings, Jon
    Borja, Juan
    O'Neil, Travis
    Neumann, S. Ephraim
    Moore, David R.
    Yaghi, Omar M.
    Glover, T. Grant
    CHEMICAL ENGINEERING SCIENCE, 2024, 285
  • [38] Multivariate MOF for optimizing atmospheric water harvesting
    Ma, Ao
    Cong, Hengjiang
    Deng, Hexiang
    GREEN ENERGY & ENVIRONMENT, 2022, 7 (04) : 575 - 577
  • [39] Atmospheric water harvesting: critical metrics and challenges
    Wang, Jiayun
    Hua, Lingji
    Li, Chunfeng
    Wang, Ruzhu
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (12) : 4867 - 4871
  • [40] Sustainable water generation: grand challenges in continuous atmospheric water harvesting
    Poredos, Primoz
    Shan, He
    Wang, Chenxi
    Deng, Fangfang
    Wang, Ruzhu
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (08) : 3223 - 3235