Computability of solutions of the Korteweg-de Vries equation

被引:0
|
作者
Gay, W
Zhang, BY
Zhong, N
机构
[1] Univ Cincinnati, Clermont Coll, Batavia, OH 45103 USA
[2] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
关键词
initial value problem; KdV equation; Sobolev space;
D O I
10.1002/1521-3870(200101)47:1<93::AID-MALQ93>3.0.CO;2-C
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study computability of the solutions of the Korteweg-de Vries (KdV) equation u(t) + uu(x) + u(xxx) = 0. This is one of the open problems posted by Pour-El and Richards [25]. Based on Bourgain's new approach to the initial value problem for the KdV equation in the periodic case, we show that the periodic solution u(x, t) of the KdV equation is computable if the initial data is computable.
引用
收藏
页码:93 / 110
页数:18
相关论文
共 50 条
  • [41] Cosmology and the Korteweg-de Vries equation
    Lidsey, James E.
    PHYSICAL REVIEW D, 2012, 86 (12)
  • [42] GENERALIZATIONS OF THE KORTEWEG-DE VRIES EQUATION
    SAUT, JC
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 1979, 58 (01): : 21 - 61
  • [43] On the propagation of regularity for solutions of the fractional Korteweg-de Vries equation
    Mendez, Argenis J.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 269 (11) : 9051 - 9089
  • [44] Lump and Interaction solutions of a geophysical Korteweg-de Vries equation
    Rizvi, S. T. R.
    Seadawy, Aly R.
    Ashraf, F.
    Younis, M.
    Iqbal, H.
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 19
  • [45] Rapidly oscillating solutions of a generalized Korteweg-de Vries equation
    Kashchenko, S. A.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2017, 57 (11) : 1778 - 1788
  • [46] Integrability and solutions of a nonsymmetric discrete Korteweg-de Vries equation
    Maebel Mesfun
    Da-jun Zhang
    Song-lin Zhao
    Communications in Theoretical Physics, 2024, 76 (02) : 47 - 52
  • [47] Explicit solutions to the Korteweg-de Vries equation on the half line
    Aktosun, Tuncay
    van der Mee, Cornelis
    INVERSE PROBLEMS, 2006, 22 (06) : 2165 - 2174
  • [48] Blowup of solutions of a Korteweg-de Vries-type equation
    Yushkov, E. V.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2012, 172 (01) : 932 - 938
  • [49] The Korteweg-de Vries equation on an interval
    Himonas, A. Alexandrou
    Mantzavinos, Dionyssios
    Yan, Fangchi
    JOURNAL OF MATHEMATICAL PHYSICS, 2019, 60 (05)
  • [50] Decay of Solutions to Damped Korteweg-de Vries Type Equation
    Cavalcanti, Marcelo M.
    Domingos Cavalcanti, Valeria N.
    Faminskii, Andrei
    Natali, Fabio
    APPLIED MATHEMATICS AND OPTIMIZATION, 2012, 65 (02): : 221 - 251