Hierarchical Generative Adversarial Networks for Single Image Super-Resolution

被引:10
|
作者
Chen, Weimin [1 ]
Ma, Yuqing [2 ]
Liu, Xianglong [2 ]
Yuan, Yi [1 ]
机构
[1] NetEase Fuxi AI Lab, Hangzhou, Peoples R China
[2] Beihang Univ, State Key Lab Software Dev Environm, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/WACV48630.2021.00040
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, deep convolutional neural network (CNN) have achieved promising performance for single image super-resolution (SISR). However, they usually extract features on a single scale and lack sufficient supervision information, leading to undesired artifacts and unpleasant noise in super-resolution (SR) images. To address this problem, we first propose a hierarchical feature extraction module (HFEM) to extract the features in multiple scales, which helps concentrate on both local textures and global semantics. Then, a hierarchical guided reconstruction module (HGRM) is introduced to reconstruct more natural structural textures in SR images via intermediate supervisions in a progressive manner. Finally, we integrate HFEM and HGRM in a simple yet efficient end-to-end framework named hierarchical generative adversarial networks (HSR-GAN) to recover consistent details, and thus obtain the semantically reasonable and visually realistic results. Extensive experiments on five common datasets demonstrate that our method shows favorable visual quality and superior quantitative performance compared to state-of-the-art methods for SISR.
引用
下载
收藏
页码:355 / 364
页数:10
相关论文
共 50 条
  • [41] Spatial Transformer Generative Adversarial Network for Image Super-Resolution
    Rempakos, Pantelis
    Vrigkas, Michalis
    Plissiti, Marina E.
    Nikou, Christophoros
    IMAGE ANALYSIS AND PROCESSING, ICIAP 2023, PT I, 2023, 14233 : 399 - 411
  • [42] Image super-resolution using conditional generative adversarial network
    Qiao, Jiaojiao
    Song, Huihui
    Zhang, Kaihua
    Zhang, Xiaolu
    Liu, Qingshan
    IET IMAGE PROCESSING, 2019, 13 (14) : 2673 - 2679
  • [43] MULTIRESOLUTION MIXTURE GENERATIVE ADVERSARIAL NETWORK FOR IMAGE SUPER-RESOLUTION
    Wang, Yudiao
    Lan, Xuguang
    Zhang, Yinshu
    Miao, Ruixue
    Tian, Zhiqiang
    2020 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2020,
  • [44] A Super-Resolution Reconstruction Model for Remote Sensing Image Based on Generative Adversarial Networks
    Hu, Wenyi
    Ju, Lei
    Du, Yujia
    Li, Yuxia
    REMOTE SENSING, 2024, 16 (08)
  • [45] Super-resolution image reconstruction based on convolutional sparse coding and generative adversarial networks
    Du Jun-sen
    Guo Jie-long
    Yu Hui
    Wei Xian
    CHINESE JOURNAL OF LIQUID CRYSTALS AND DISPLAYS, 2023, 38 (10) : 1423 - 1433
  • [46] Multiple Cycle-in-Cycle Generative Adversarial Networks for Unsupervised Image Super-Resolution
    Zhang, Yongbing
    Liu, Siyuan
    Dong, Chao
    Zhang, Xinfeng
    Yuan, Yuan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 1101 - 1112
  • [47] Generative adversarial image super-resolution network for multiple degradations
    Lin, Hong
    Fan, Jing
    Zhang, Yangyi
    Peng, Dewei
    IET IMAGE PROCESSING, 2020, 14 (17) : 4520 - 4527
  • [48] Image Super-Resolution using a Improved Generative Adversarial Network
    Wang, Han
    Wu, Wei
    Su, Yang
    Duan, Yongsheng
    Wang, Pengze
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 312 - 315
  • [49] Underwater Acoustic Image Enhancement by Using Fast Super-Resolution with Generative Adversarial Networks
    Bucci, Alessandro
    Topini, Alberto
    Franchi, Matteo
    Zacchini, Leonardo
    Secciani, Nicola
    Ridolfi, Alessandro
    GLOBAL OCEANS 2020: SINGAPORE - U.S. GULF COAST, 2020,
  • [50] Perception-Enhanced Image Super-Resolution via Relativistic Generative Adversarial Networks
    Thang Vu
    Tung M Luu
    Yoo, Chang D.
    COMPUTER VISION - ECCV 2018 WORKSHOPS, PT V, 2019, 11133 : 98 - 113