Exploiting color name space for salient object detection

被引:8
|
作者
Lou, Jing [1 ]
Wang, Huan [2 ]
Chen, Longtao [2 ]
Xu, Fenglei [2 ]
Xia, Qingyuan [2 ]
Zhu, Wei [2 ]
Ren, Mingwu [2 ]
机构
[1] Changzhou Vocat Inst Mechatron Technol, Sch Informat Engn, Changzhou 213164, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Saliency; Salient object detection; Figure-ground segregation; Surroundedness; Color names; Color name space; REGION DETECTION; VISUAL-ATTENTION; IMAGE; INTEGRATION; MODEL;
D O I
10.1007/s11042-019-07970-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we will investigate the contribution of color names for the task of salient object detection. An input image is first converted to color name space, which is consisted of 11 probabilistic channels. By exploiting a surroundedness cue, we obtain a saliency map through a linear combination of a set of sequential attention maps. To overcome the limitation of only using the surroundedness cue, two global cues with respect to color names are invoked to guide the computation of a weighted saliency map. Finally, we integrate the above two saliency maps into a unified framework to generate the final result. In addition, an improved post-processing procedure is introduced to effectively suppress image backgrounds while uniformly highlight salient objects. Experimental results show that the proposed model produces more accurate saliency maps and performs well against twenty-one saliency models in terms of three evaluation metrics on three public data sets.
引用
收藏
页码:10873 / 10897
页数:25
相关论文
共 50 条
  • [31] SPECTRAL SALIENT OBJECT DETECTION
    Fu, Keren
    Gong, Chen
    Gu, Irene Y. H.
    Yang, Jie
    He, Xiangjian
    2014 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2014,
  • [32] Salient object detection: A survey
    Ali Borji
    Ming-Ming Cheng
    Qibin Hou
    Huaizu Jiang
    Jia Li
    Computational Visual Media, 2019, 5 : 117 - 150
  • [33] A hybrid approach using color spatial variance and novel object position prior for salient object detection
    Vivek Kumar Singh
    Nitin Kumar
    Navjot Singh
    Multimedia Tools and Applications, 2020, 79 : 30045 - 30067
  • [34] A hybrid approach using color spatial variance and novel object position prior for salient object detection
    Singh, Vivek Kumar
    Kumar, Nitin
    Singh, Navjot
    MULTIMEDIA TOOLS AND APPLICATIONS, 2020, 79 (39-40) : 30045 - 30067
  • [35] Moving object detection using LAB color space
    Xu, Li
    Wang, Min
    Wen, Yue
    Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of Science and Technology (Natural Science Edition), 2013, 41 (SUPPL.I): : 219 - 222
  • [36] AUTOMATIC OBJECT SEGMENTATION WITH SALIENT COLOR MODEL
    Kao, Chieh-Chi
    Lai, Jui-Hsin
    Chien, Shao-Yi
    2011 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2011,
  • [37] Salient Object Detection with Pyramid Attention and Salient Edges
    Wang, Wenguan
    Zhao, Shuyang
    Shen, Jianbing
    Hoi, Steven C. H.
    Borji, Ali
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 1448 - 1457
  • [38] Seamless Detection: Unifying Salient Object Detection and Camouflaged Object Detection
    Liu, Yi
    Li, Chengxin
    Dong, Xiaohui
    Li, Lei
    Zhang, Dingwen
    Xu, Shoukun
    Han, Jungong
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 274
  • [39] A LOCATION-AWARE SCALE-SPACE METHOD FOR SALIENT OBJECT DETECTION
    Xiang, Dan
    Zhong, Baojiang
    Ma, Kai-Kuang
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 4195 - 4199
  • [40] Salient region detection and object segmentation in color images using dynamic mode decomposition
    Sikha, O. K.
    Kumar, S. Sachin
    Soman, K. P.
    JOURNAL OF COMPUTATIONAL SCIENCE, 2018, 25 : 351 - 366