Exploiting color name space for salient object detection

被引:8
|
作者
Lou, Jing [1 ]
Wang, Huan [2 ]
Chen, Longtao [2 ]
Xu, Fenglei [2 ]
Xia, Qingyuan [2 ]
Zhu, Wei [2 ]
Ren, Mingwu [2 ]
机构
[1] Changzhou Vocat Inst Mechatron Technol, Sch Informat Engn, Changzhou 213164, Jiangsu, Peoples R China
[2] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Jiangsu, Peoples R China
基金
中国国家自然科学基金; 中国博士后科学基金;
关键词
Saliency; Salient object detection; Figure-ground segregation; Surroundedness; Color names; Color name space; REGION DETECTION; VISUAL-ATTENTION; IMAGE; INTEGRATION; MODEL;
D O I
10.1007/s11042-019-07970-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we will investigate the contribution of color names for the task of salient object detection. An input image is first converted to color name space, which is consisted of 11 probabilistic channels. By exploiting a surroundedness cue, we obtain a saliency map through a linear combination of a set of sequential attention maps. To overcome the limitation of only using the surroundedness cue, two global cues with respect to color names are invoked to guide the computation of a weighted saliency map. Finally, we integrate the above two saliency maps into a unified framework to generate the final result. In addition, an improved post-processing procedure is introduced to effectively suppress image backgrounds while uniformly highlight salient objects. Experimental results show that the proposed model produces more accurate saliency maps and performs well against twenty-one saliency models in terms of three evaluation metrics on three public data sets.
引用
收藏
页码:10873 / 10897
页数:25
相关论文
共 50 条
  • [1] Exploiting color name space for salient object detection
    Jing Lou
    Huan Wang
    Longtao Chen
    Fenglei Xu
    Qingyuan Xia
    Wei Zhu
    Mingwu Ren
    Multimedia Tools and Applications, 2020, 79 : 10873 - 10897
  • [2] A unified framework for exploiting color coefficients for salient object detection
    Naqvi, Syed S.
    Mirza, J.
    Bashir, Tariq
    NEUROCOMPUTING, 2018, 312 : 187 - 200
  • [3] Multi-Color Space Network for Salient Object Detection
    Lee, Kyungjun
    Jeong, Jechang
    SENSORS, 2022, 22 (09)
  • [4] Exploiting Color Volume and Color Difference for Salient Region Detection
    Liu, Guang-Hai
    Yang, Jing-Yu
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 6 - 16
  • [5] Exploiting background divergence and foreground compactness for salient object detection
    Xia, Chenxing
    Zhang, Hanling
    Gao, Xiuju
    Li, Keqin
    NEUROCOMPUTING, 2020, 383 : 194 - 211
  • [6] Salient Object Detection by Combining Multiple Color Clustering
    Oh, Kang Han
    Kim, Soo Hyung
    Kim, Young Chul
    ACM IMCOM 2015, PROCEEDINGS, 2015,
  • [7] Depth incorporating with color improves salient object detection
    Tang, Yanlong
    Tong, Ruofeng
    Tang, Min
    Zhang, Yun
    VISUAL COMPUTER, 2016, 32 (01): : 111 - 121
  • [8] Salient object detection via color and texture cues
    Zhang, Qing
    Lin, Jiajun
    Tao, Yanyun
    Li, Wenju
    Shi, Yanjiao
    NEUROCOMPUTING, 2017, 243 : 35 - 48
  • [9] Depth incorporating with color improves salient object detection
    Yanlong Tang
    Ruofeng Tong
    Min Tang
    Yun Zhang
    The Visual Computer, 2016, 32 : 111 - 121
  • [10] Superpixel based color contrast and color distribution driven salient object detection
    Fu, Keren
    Gong, Chen
    Yang, Jie
    Zhou, Yue
    Gu, Irene Yu-Hua
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2013, 28 (10) : 1448 - 1463