Imputation approaches for estimating diagnostic accuracy for multiple tests from partially verified designs

被引:11
|
作者
Albert, Paul S. [1 ]
机构
[1] NCI, Biometr Res Branch, Div Canc Treatment & Diag, Bethesda, MD 20892 USA
关键词
diagnostic accuracy; gold standard evaluation; latent class models; mean imputation; multiple tests; partial verification; prevalence; semilatent class models; sensitivity; specificity; verification bias;
D O I
10.1111/j.1541-0420.2006.00734.x
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Interest often focuses on estimating sensitivity and specificity of a group of raters or a set of new diagnostic tests in situations in which gold standard evaluation is expensive or invasive. Various authors have proposed semilatent class modeling approaches for estimating diagnostic accuracy in this situation. This article presents imputation approaches for this problem. I show how imputation provides a simpler way of performing diagnostic accuracy and prevalence estimation than the use of semilatent modeling. Furthermore, the imputation approach is more robust to modeling assumptions and, in general, there is only a moderate efficiency loss relative to a correctly specified semilatent class model. I apply imputation to a study designed to estimate the diagnostic accuracy of digital radiography for gastric cancer. The feasibility and robustness of imputation is illustrated with analysis, asymptotic results, and simulations.
引用
收藏
页码:947 / 957
页数:11
相关论文
共 50 条
  • [1] On implementation of the Gibbs sampler for estimating the accuracy of multiple diagnostic tests
    Principato, Fabio
    Vullo, Angela
    Matranga, Domenica
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (08) : 1335 - 1354
  • [2] A MULTIPLE IMPUTATION APPROACH TO EVALUATE THE ACCURACY OF DIAGNOSTIC TESTS IN PRESENCE OF MISSING VALUES
    Gad, Ahmed M.
    Alf, Asmaa A. M.
    Mohamed, Ramadan H.
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2022,
  • [3] Estimating diagnostic accuracy of multiple binary tests with an imperfect reference standard
    Albert, Paul S.
    STATISTICS IN MEDICINE, 2009, 28 (05) : 780 - 797
  • [4] A pseudo-likelihood approach for estimating diagnostic accuracy of multiple binary medical tests
    Liu, Wei
    Zhang, Bo
    Zhang, Zhiwei
    Chen, Baojiang
    Zhou, Xiao-Hua
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2015, 84 : 85 - 98
  • [5] Analysis of partially observed clustered data using generalized estimating equations and multiple imputation
    Aloisio, Kathryn M.
    Micali, Nadia
    Swanson, Sonja A.
    Field, Alison
    Horton, Nicholas J.
    STATA JOURNAL, 2014, 14 (04): : 863 - 883
  • [6] Accuracy of diagnostic tests in multiple sclerosis - a systematic review
    Schaeffler, N.
    Koepke, S.
    Winkler, L.
    Schippling, S.
    Inglese, M.
    Fischer, K.
    Heesen, C.
    ACTA NEUROLOGICA SCANDINAVICA, 2011, 124 (03): : 151 - 164
  • [7] ESTIMATING THE COMPARATIVE ACCURACY OF DIAGNOSTIC TESTS: AN EXAMPLE USING TYPHOID FEVER
    Arora, P.
    Thorlund, K.
    Brenner, D. R.
    Andrews, J. R.
    VALUE IN HEALTH, 2017, 20 (09) : A574 - A575
  • [8] Estimating and comparing diagnostic tests' accuracy when the gold standard is not binary
    Obuchowski, NA
    ACADEMIC RADIOLOGY, 2005, 12 (09) : 1198 - 1204
  • [9] On estimating diagnostic accuracy from studies with multiple raters and partial gold standard evaluation
    Albert, Paul S.
    Dodd, Lori E.
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (481) : 61 - 73
  • [10] ESTIMATING DIAGNOSTIC-ACCURACY FROM MULTIPLE CONFLICTING REPORTS - A NEW METAANALYTIC METHOD
    LITTENBERG, B
    MOSES, LE
    MEDICAL DECISION MAKING, 1993, 13 (04) : 313 - 321