A jackknifed ridge estimator in probit regression model

被引:2
|
作者
Asar, Yasin [1 ]
Kilinc, Kadriye [2 ]
机构
[1] Necmettin Erbakan Univ, Dept Math Comp, TR-42090 Konya, Turkey
[2] Necmettin Erbakan Univ, Grad Sch Nat & Appl Sci, Konya, Turkey
关键词
Multicollinearity; ridge estimator; jackknifed ridge estimator; probit model; mean squared error; PERFORMANCE; PARAMETERS; BIAS;
D O I
10.1080/02331888.2020.1775597
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this study, the effects of multicollinearity on the maximum likelihood estimator are analyzed in the probit regression model. It is known that the near-linear dependencies in the design matrix affect the maximum likelihood estimation negatively, namely, the standard errors become so large so that the estimations are said to be inconsistent. Therefore, a new jackknifed ridge estimator is introduced as an alternative to the maximum likelihood technique and the well-known ridge estimator. The mean squared error properties of the listed estimators are investigated theoretically. In order to evaluate the performance of the estimators, a Monte Carlo simulation study is designed, and simulated mean squared error and squared bias are used as performance criteria. Finally, the benefits of the new estimator are illustrated via a real data application.
引用
收藏
页码:667 / 685
页数:19
相关论文
共 50 条
  • [31] THE HELPFUL RIDGE REGRESSION ESTIMATOR
    Khalaf, Ghadban
    [J]. ADVANCES AND APPLICATIONS IN STATISTICS, 2013, 34 (01) : 39 - 48
  • [32] Mean squared error comparisons of the modified ridge regression estimator and the restricted ridge regression estimator
    Kaciranlar, S
    Sakallioglu, S
    Akdeniz, F
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1998, 27 (01) : 131 - 138
  • [33] Linearized Ridge Regression Estimator in Linear Regression
    Liu, Xu-Qing
    Gao, Feng
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2011, 40 (12) : 2182 - 2192
  • [34] RISK CHARACTERISTICS OF A STEIN-LIKE ESTIMATOR FOR THE PROBIT REGRESSION-MODEL
    ADKINS, LC
    HILL, RC
    [J]. ECONOMICS LETTERS, 1989, 30 (01) : 19 - 26
  • [35] Ridge-Type MML Estimator in the Linear Regression Model
    Sukru Acitas
    Birdal Senoglu
    [J]. Iranian Journal of Science and Technology, Transactions A: Science, 2019, 43 : 589 - 599
  • [36] Ridge-Type MML Estimator in the Linear Regression Model
    Acitas, Sukru
    Senoglu, Birdal
    [J]. IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2019, 43 (A2): : 589 - 599
  • [37] Almost Unbiased Ridge Estimator in the Inverse Gaussian Regression Model
    Al-Taweel, Younus Hazim
    Algamal, Zakariya Yahya
    [J]. ELECTRONIC JOURNAL OF APPLIED STATISTICAL ANALYSIS, 2022, 15 (03) : 510 - 526
  • [38] Modified two parameter ridge estimator for beta regression model
    Junaid, Ayesha
    Khan, Aamna
    Alrumayh, Amani
    Alghamdi, Fatimah M.
    Hussam, Eslam
    Aljohani, Hassan M.
    Alrashidi, Afaf
    [J]. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES, 2024, 17 (02)
  • [39] A new stochastic mixed ridge estimator in linear regression model
    Li, Yalian
    Yang, Hu
    [J]. STATISTICAL PAPERS, 2010, 51 (02) : 315 - 323
  • [40] A New Ridge-Type Estimator for the Gamma Regression Model
    Lukman, Adewale F.
    Dawoud, Issam
    Kibria, B. M. Golam
    Algamal, Zakariya Y.
    Aladeitan, Benedicta
    [J]. SCIENTIFICA, 2021, 2021