A COMPARISON OF LOW-LOAD EFFICIENCY OPTIMIZATION ON A HEAVY-DUTY ENGINE OPERATED WITH GASOLINE -DIESEL RCCI AND CDC

被引:0
|
作者
Willems, R. C. [1 ]
Willems, F. P. T. [1 ]
Deen, N. G. [1 ]
Somers, L. M. T. [1 ]
机构
[1] Eindhoven Univ Technol, Eindhoven, Netherlands
来源
PROCEEDINGS OF THE ASME INTERNAL COMBUSTION ENGINE FALL TECHNICAL CONFERENCE, 2019 | 2020年
关键词
COMPRESSION IGNITION RCCI; INJECTION STRATEGIES; FUEL; COMBUSTION; EMISSIONS; BENEFITS;
D O I
暂无
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Upcoming CO2 legislation in Europe is driving heavy-duty vehicle manufacturers to develop highly efficient engines more than ever before. Further improvements to conventional diesel combustion, or adopting the reactivity controlled compression ignition concept are both plausible strategies to comply with mandated targets. This work compares these two combustion regimes by performing an optimization on both using Design of Experiments. The tests are conducted on a heavy-duty, single-cylinder engine fueled with either only diesel, or a combination of diesel and gasoline. Analysis of variance is used to reveal the most influential operating parameters with respect to indicated efficiency. Attention is also directed towards the distribution of fuel energy to quantify individual loss channels. A load-speed combination typical for highway cruising is selected given its substantial contribution to the total fuel consumption of long haul trucks. Experiments show that when the intake manifold pressure is limited to levels that are similar to contemporary turbocharger capabilities, the conventional diesel combustion regime outperforms the dual fuel mode. Yet, the latter displays superior low levels of nitrogen oxides. Suboptimal combustion phasing was identified as main cause for this lower efficiency. By leaving the intake manifold pressure unrestricted, reactivity controlled compression ignition surpasses conventional diesel combustion regarding both the emissions of nitrogen oxides and indicated efficiency.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Design and optimization of exhaust gas aftertreatment system for a heavy-duty diesel engine
    Tan Pi-qiang
    Yao Chao-jie
    Wang De-yuan
    Zhu Lei
    Hu Zhi-yuan
    Lou Di-ming
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2022, 29 (07) : 2127 - 2141
  • [42] Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine
    Pan, Suozhu
    Cai, Kai
    Cai, Min
    Du, Chenbo
    Li, Xin
    Han, Weiqiang
    Wang, Xin
    Liu, Daming
    Wei, Jiangjun
    Fang, Jia
    Bao, Xiuchao
    ENERGY, 2021, 237
  • [43] Experimental analysis of ethanol dual-fuel combustion in a heavy-duty diesel engine: An optimisation at low load
    Pedrozo, Vinicius B.
    May, Ian
    Dalla Nora, Macklini
    Cairns, Alasdair
    Zhao, Hua
    APPLIED ENERGY, 2016, 165 : 166 - 182
  • [44] Heavy-duty diesel engine fuel consumption comparison with diesel and biodiesel measured at different altitudes
    Hao C.
    Ge Y.
    Wang X.
    2020, 6 (02): : 263 - 276
  • [45] Artificial neural network to identify RCCI combustion mathematical model for a heavy-duty diesel engine fueled with natural gas and diesel oil
    Ebrahimi, Mojtaba
    Najafi, Mohammad
    Jazayeri, Seyed Ali
    JOURNAL OF THE BRAZILIAN SOCIETY OF MECHANICAL SCIENCES AND ENGINEERING, 2018, 40 (09)
  • [46] Artificial neural network to identify RCCI combustion mathematical model for a heavy-duty diesel engine fueled with natural gas and diesel oil
    Mojtaba Ebrahimi
    Mohammad Najafi
    Seyed Ali Jazayeri
    Journal of the Brazilian Society of Mechanical Sciences and Engineering, 2018, 40
  • [47] Effects of insulation on exhaust temperature and subsequent SCR efficiency of a heavy-duty diesel engine
    Wang, Tae Joong
    JOURNAL OF MECHANICAL SCIENCE AND TECHNOLOGY, 2019, 33 (02) : 923 - 929
  • [48] Effects of insulation on exhaust temperature and subsequent SCR efficiency of a heavy-duty diesel engine
    Tae Joong Wang
    Journal of Mechanical Science and Technology, 2019, 33 : 923 - 929
  • [49] Tailored Air-Handling System Development for Gasoline Compression Ignition in a Heavy-Duty Diesel Engine
    Kumar, Praveen
    Zhang, Yu
    Traver, Michael
    Watson, John
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2021, 7
  • [50] Influence of fuel injection parameters at low-load conditions in a partially premixed combustion (PPC) based heavy-duty optical engine
    Goyal, Harsh
    Panthi, Niraj
    Almanashi, Aqeel
    Magnotti, Gaetano
    APPLIED THERMAL ENGINEERING, 2023, 232