The Distinguishing Number and Distinguishing Chromatic Number for Posets

被引:1
|
作者
Collins, Karen L. [1 ]
Trenk, Ann N. [2 ]
机构
[1] Wesleyan Univ, Dept Math & Comp Sci, Middletown, CT 06459 USA
[2] Wellesley Coll, Dept Math, Wellesley, MA 02481 USA
关键词
Distributive lattice; Distinguishing number; Distinguishing chromatic number; Birkhoff's theorem; MOTION;
D O I
10.1007/s11083-021-09583-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we introduce the concepts of the distinguishing number and the distinguishing chromatic number of a poset. For a distributive lattice L and its set Q(L) of join-irreducibles, we use classic lattice theory to show that any linear extension of Q(L) generates a distinguishing 2-coloring of L. We prove general upper bounds for the distinguishing chromatic number and particular upper bounds for the Boolean lattice and for divisibility lattices. In addition, we show that the distinguishing number of any twin-free Cohen-Macaulay planar lattice is at most 2.
引用
收藏
页码:361 / 380
页数:20
相关论文
共 50 条
  • [21] A NOTE ON THE LINE-DISTINGUISHING CHROMATIC NUMBER AND THE CHROMATIC INDEX OF A GRAPH
    SALVI, NZ
    JOURNAL OF GRAPH THEORY, 1993, 17 (05) : 589 - 591
  • [22] THE LIST DISTINGUISHING NUMBER EQUALS THE DISTINGUISHING NUMBER FOR INTERVAL GRAPHS
    Immel, Poppy
    Wenger, Paul S.
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2017, 37 (01) : 165 - 174
  • [23] Vertex Distinguishing Equitable Total Chromatic Number of Join Graph
    Zhi-wen Wang~(1
    Acta Mathematicae Applicatae Sinica, 2007, (03) : 433 - 438
  • [24] Neighbor sum distinguishing total chromatic number of planar graphs
    Xu, Changqing
    Li, Jianguo
    Ge, Shan
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 332 : 189 - 196
  • [25] Δ+300 is a bound on the adjacent vertex distinguishing edge chromatic number
    Hatami, H
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2005, 95 (02) : 246 - 256
  • [26] A note on the adjacent vertex distinguishing total chromatic number of graph
    Wang, Zhiwen
    ADVANCED MATERIALS AND COMPUTER SCIENCE, PTS 1-3, 2011, 474-476 : 2341 - 2345
  • [27] Vertex distinguishing equitable total chromatic number of join graph
    Wang, Zhi-wen
    Yan, Li-hong
    Zhang, Zhong-fu
    ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2007, 23 (03): : 433 - 438
  • [28] A note on the adjacent vertex distinguishing total chromatic number of graphs
    Huang, Danjun
    Wang, Weifan
    Yan, Chengchao
    DISCRETE MATHEMATICS, 2012, 312 (24) : 3544 - 3546
  • [29] General neighbour-distinguishing index via chromatic number
    Hornak, Mirko
    Sotak, Roman
    DISCRETE MATHEMATICS, 2010, 310 (12) : 1733 - 1736
  • [30] On the vertex-distinguishing edge chromatic number of Cm ∨ Cn
    Jingwen, Li
    Baogen, Xu
    Zhang Zhongfu
    PROCEEDINGS OF THE CHINA ASSOCIATION FOR SCIENCE AND TECHNOLOGY, VOL 4, NO 3, 2008, : 235 - 237