Fluorescent Single-Walled Carbon Nanotubes for Protein Detection

被引:65
|
作者
Hendler-Neumark, Adi [1 ]
Bisker, Gili [1 ]
机构
[1] Tel Aviv Univ, Fac Engn, Dept Biomed Engn, IL-6997801 Tel Aviv, Israel
关键词
molecular recognition; fluorescent nanoparticles; single-walled carbon nanotubes; protein detection; nanosensors; PHASE MOLECULAR RECOGNITION; QUANTUM DOTS; LIVE CELLS; OPTICAL-DETECTION; ANTIBODY; DNA; SENSOR; NANOSENSOR; NANOPARTICLES; NANOMATERIALS;
D O I
10.3390/s19245403
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Nanosensors have a central role in recent approaches to molecular recognition in applications like imaging, drug delivery systems, and phototherapy. Fluorescent nanoparticles are particularly attractive for such tasks owing to their emission signal that can serve as optical reporter for location or environmental properties. Single-walled carbon nanotubes (SWCNTs) fluoresce in the near-infrared part of the spectrum, where biological samples are relatively transparent, and they do not photobleach or blink. These unique optical properties and their biocompatibility make SWCNTs attractive for a variety of biomedical applications. Here, we review recent advancements in protein recognition using SWCNTs functionalized with either natural recognition moieties or synthetic heteropolymers. We emphasize the benefits of the versatile applicability of the SWCNT sensors in different systems ranging from single-molecule level to in-vivo sensing in whole animal models. Finally, we discuss challenges, opportunities, and future perspectives.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Cutting single-walled carbon nanotubes
    Ziegler, KJ
    Gu, ZN
    Shaver, J
    Chen, ZY
    Flor, EL
    Schmidt, DJ
    Chan, C
    Hauge, RH
    Smalley, RE
    NANOTECHNOLOGY, 2005, 16 (07) : S539 - S544
  • [22] Antioxidant single-walled carbon nanotubes
    Departments of Chemistry and Mechanical Engineering and Materials Science, Smalley Institute for Nanoscale Science and Technology, Rice University, 6100 Main Street, Houston, TX 77005
    不详
    J. Am. Chem. Soc., 2009, 11 (X3934-3941):
  • [23] Photoconductivity of single-walled carbon nanotubes
    Fujiwara, A
    Matsuoka, Y
    Suematsu, H
    Ogawa, N
    Miyano, K
    Kataura, H
    Maniwa, Y
    Suzuki, S
    Achiba, Y
    NANONETWORK MATERIALS: FULLERENES, NANOTUBES AND RELATED SYSTEMS, 2001, 590 : 189 - 192
  • [24] Silylation of single-walled carbon nanotubes
    Hemraj-Benny, Tirandai
    Wong, Stanislaus S.
    CHEMISTRY OF MATERIALS, 2006, 18 (20) : 4827 - 4839
  • [25] Localization in single-walled carbon nanotubes
    Fuhrer, MS
    Cohen, ML
    Zettl, A
    Crespi, V
    SOLID STATE COMMUNICATIONS, 1999, 109 (02) : 105 - 109
  • [26] Purification of single-walled carbon nanotubes
    Pillai, Sreejarani K.
    Ray, Suprakas Sinha
    Moodley, Mathew
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2007, 7 (09) : 3011 - 3047
  • [27] Functionalization of single-walled carbon nanotubes
    Hirsch, A
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2002, 41 (11) : 1853 - 1859
  • [28] Iodination of single-walled carbon nanotubes
    Coleman, Karl S.
    Chakraborty, Amit K.
    Bailey, Sam R.
    Sloan, Jeremy
    Alexander, Morgan
    CHEMISTRY OF MATERIALS, 2007, 19 (05) : 1076 - 1081
  • [29] Nucleation of single-walled carbon nanotubes
    Fan, X
    Buczko, R
    Puretzky, AA
    Geohegan, DB
    Howe, JY
    Pantelides, ST
    Pennycook, SJ
    PHYSICAL REVIEW LETTERS, 2003, 90 (14)
  • [30] On the vibrations of single-walled carbon nanotubes
    Arghavan, S.
    Singh, A. V.
    JOURNAL OF SOUND AND VIBRATION, 2011, 330 (13) : 3102 - 3122