Visual task identification and characterization using polynomial models

被引:6
|
作者
Akanyeti, O. [1 ]
Kyriacou, T.
Nehmow, U.
Iglesias, R.
Billings, S. A.
机构
[1] Univ Essex, Dept Comp Sci, Colchester CO4 3SQ, Essex, England
[2] Univ Santiago de Compostela, Santiago De Compostela, Spain
[3] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S10 2TN, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
autonomous mobile robots; system identification; polynomials;
D O I
10.1016/j.robot.2007.05.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Developing robust and reliable control code for autonomous mobile robots is difficult, because the interaction between a physical robot and the environment is highly complex, subject to noise and variation, and therefore partly unpredictable. This means that to date it is not possible to predict robot behaviour based on theoretical models. Instead, current methods to develop robot control code still require a substantial trial-and-error component to the software design process. This paper proposes a method of dealing with these issues by (a) establishing task-achieving sensor-motor couplings through robot training, and (b) representing these couplings through transparent mathematical functions that can be used to form hypotheses and theoretical analyses of robot behaviour. We demonstrate the viability of this approach by teaching a mobile robot to track a moving football and subsequently modelling this task using the NARMAX system identification technique. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:711 / 719
页数:9
相关论文
共 50 条
  • [21] Perceptual learning effect with a visual identification task.
    Angulo, R.
    Alonso, G.
    SPANISH JOURNAL OF PSYCHOLOGY, 2007, 10 (02): : 490 - 491
  • [22] THE EFFECT OF AUDITORY AND VISUAL MODELS ON ACQUISITION OF A TIMING TASK
    DOODY, SG
    BIRD, AM
    ROSS, D
    HUMAN MOVEMENT SCIENCE, 1985, 4 (04) : 271 - 281
  • [23] Experimental approach for robust identification of radiofrequency power amplifier behavioural models using polynomial structures
    Saied-Bouajina, S.
    Hammi, O.
    Jaidane-Saidane, M.
    Ghannouchi, F. M.
    IET MICROWAVES ANTENNAS & PROPAGATION, 2010, 4 (11) : 1818 - 1828
  • [24] Nonlinear identification and control of Organic Rankine Cycle systems using sparse polynomial models.
    Hernandez, Andres
    Ruiz, Fredy
    Desideri, Adriano
    Ionescu, Clara
    Quoilin, Sylvain
    Lemort, Vincent
    De Keyser, Robin
    2016 IEEE CONFERENCE ON CONTROL APPLICATIONS (CCA), 2016,
  • [25] Identification of nonlinear systems using neural networks and polynomial models: A Block-Oriented Approach
    Janczak, Andrzej
    Lecture Notes in Control and Information Sciences, 2005, 310
  • [26] Audio-visual speaker identification using coupled hidden markov models
    Fu, T
    Liu, XX
    Liang, LH
    Pi, XB
    Nefian, AV
    2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, 2003, : 29 - 32
  • [27] Theoretical Characterization of Memory Polynomial Models With Gaussian Inputs
    Ermolova, Natalia Y.
    Tirkkonen, Olav
    IEEE SIGNAL PROCESSING LETTERS, 2009, 16 (08) : 651 - 654
  • [28] Colorimetric characterization for scanner based on polynomial regression models
    Wang, Yong
    Xu, Haisong
    Guangxue Xuebao/Acta Optica Sinica, 2007, 27 (06): : 1135 - 1138
  • [29] Characterization of reservoir simulation models using a polynomial chaos-based ensemble Kalman filter
    Saad, George
    Ghanem, Roger
    WATER RESOURCES RESEARCH, 2009, 45
  • [30] Approximate SEM identification of polynomial input-output models
    Farina, Marcello
    Piroddi, Luigi
    2010 AMERICAN CONTROL CONFERENCE, 2010, : 7040 - 7045