Visual task identification and characterization using polynomial models

被引:6
|
作者
Akanyeti, O. [1 ]
Kyriacou, T.
Nehmow, U.
Iglesias, R.
Billings, S. A.
机构
[1] Univ Essex, Dept Comp Sci, Colchester CO4 3SQ, Essex, England
[2] Univ Santiago de Compostela, Santiago De Compostela, Spain
[3] Univ Sheffield, Dept Automat Control & Syst Engn, Sheffield S10 2TN, S Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
autonomous mobile robots; system identification; polynomials;
D O I
10.1016/j.robot.2007.05.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Developing robust and reliable control code for autonomous mobile robots is difficult, because the interaction between a physical robot and the environment is highly complex, subject to noise and variation, and therefore partly unpredictable. This means that to date it is not possible to predict robot behaviour based on theoretical models. Instead, current methods to develop robot control code still require a substantial trial-and-error component to the software design process. This paper proposes a method of dealing with these issues by (a) establishing task-achieving sensor-motor couplings through robot training, and (b) representing these couplings through transparent mathematical functions that can be used to form hypotheses and theoretical analyses of robot behaviour. We demonstrate the viability of this approach by teaching a mobile robot to track a moving football and subsequently modelling this task using the NARMAX system identification technique. (c) 2007 Elsevier B.V. All rights reserved.
引用
收藏
页码:711 / 719
页数:9
相关论文
共 50 条
  • [1] Process identification using polynomial models
    Ying, CM
    Joseph, B
    PROCEEDINGS OF THE 1998 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 1998, : 1245 - 1249
  • [2] USING MENTAL MODELS IN A VISUAL-MOTOR ADAPTATION TASK
    CUNNINGHAM, HA
    PAVEL, M
    HANSON, AJ
    BULLETIN OF THE PSYCHONOMIC SOCIETY, 1988, 26 (06) : 501 - 501
  • [3] Facilitatory effects of an auditory warning stimulus in a visual location identification task and a visual shape identification task
    Bueno, V. F.
    Ribeiro-oo-Valle, L. E.
    BRAZILIAN JOURNAL OF MEDICAL AND BIOLOGICAL RESEARCH, 2012, 45 (11) : 1037 - 1044
  • [4] Identification of nonlinear systems using Polynomial Nonlinear State Space models
    Paduart, Johan
    Lauwers, Lieve
    Swevers, Jan
    Smolders, Kris
    Schoukens, Johan
    Pintelon, Rik
    AUTOMATICA, 2010, 46 (04) : 647 - 656
  • [5] Towards visual analysis of usability test logs using task models
    Maly, Ivo
    Slavik, Pavel
    TASK MODELS AND DIAGRAMS FOR USERS INTERFACE DESIGN, 2007, 4385 : 24 - +
  • [6] Eyewitness Identification Is a Visual Search Task
    Wixted, John T.
    Vul, Edward
    Mickes, Laura
    Wilson, Brent M.
    ANNUAL REVIEW OF VISION SCIENCE, VOL 7, 2021, 2021, 7 : 519 - 541
  • [7] Polynomial Models Identification Using Real Data Acquisition Applied to Didactic System
    Dantas, Andre F. O. A.
    Dantas, Amanda D. O. S.
    Maitelli, Andre L.
    de Queiroz, Eridenes F.
    Freire, Hortoni G. C. V.
    Filho, Oscar G.
    2013 SYMPOSIUM ON COMPUTING AND AUTOMATION FOR OFFSHORE SHIPBUILDING (NAVCOMP 2013), 2013, : 1 - 6
  • [8] Online Identification of Environment Hunt-Crossley Models Using Polynomial Linearization
    Schindeler, Ryan
    Hashtrudi-Zaad, Keyvan
    IEEE TRANSACTIONS ON ROBOTICS, 2018, 34 (02) : 447 - 458
  • [9] Visual Network Traffic Classification Using Multi-Dimensional Piecewise Polynomial Models
    Sanders, Sean
    Fairbanks, Kevin
    Jampana, Sahitya
    Owen, Henry, III
    IEEE SOUTHEASTCON 2010: ENERGIZING OUR FUTURE, 2010, : 283 - 286
  • [10] Sparse Bayesian Identification of Polynomial NARX Models
    Jacobs, William R.
    Baldacchino, Tara
    Anderson, Sean R.
    IFAC PAPERSONLINE, 2015, 48 (28): : 172 - 177