Bayesian estimation and model selection of a multivariate smooth transition autoregressive model

被引:0
|
作者
Livingston, Glen, Jr. [1 ]
Nur, Darfiana [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[2] Flinders Univ S Australia, Coll Sci & Engn, Adelaide, SA, Australia
关键词
Bayesian; icelandic river flow; multivariate time series; paleoclimate; reversible jump MCMC; smooth transition AR;
D O I
10.1002/env.2615
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The multivariate smooth transition autoregressive model with order k (M-STAR)(k) is a nonlinear multivariate time series model able to capture regime changes in the conditional mean. The main aim of this paper is to develop a Bayesian estimation scheme for the M-STAR(k) model that includes the coefficient parameter matrix, transition function parameters, covariance parameter matrix, and the model order k as parameters to estimate. To achieve this aim, the joint posterior distribution of the parameters for the M-STAR(k) model is derived. The conditional posterior distributions are then shown, followed by the design of a posterior simulator using a combination of Markov chain Monte Carlo (MCMC) algorithms that includes the Metropolis-Hastings, Gibbs sampler, and reversible jump MCMC algorithms. Following this, extensive simulation studies, as well as case studies, are detailed at the end.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Bayesian Post-Model-Selection Estimation
    Harel, Nadav
    Routtenberg, Tirza
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 175 - 179
  • [32] Model selection for the mixed logit with Bayesian estimation
    Balcombe, Kelvin
    Chalak, Ali
    Fraser, Iain
    JOURNAL OF ENVIRONMENTAL ECONOMICS AND MANAGEMENT, 2009, 57 (02) : 226 - 237
  • [33] Wavelet estimation by Bayesian thresholding and model selection
    Cinquemani, Eugenio
    Pillonetto, Gianluigi
    AUTOMATICA, 2008, 44 (09) : 2288 - 2297
  • [34] Bayesian panel smooth transition model with spatial correlation
    Li, Kunming
    Fang, Liting
    Lu, Tao
    PLOS ONE, 2019, 14 (03):
  • [35] Representation, estimation and forecasting of the multivariate index-augmented autoregressive model
    Cubadda, Gianluca
    Guardabascio, Barbara
    INTERNATIONAL JOURNAL OF FORECASTING, 2019, 35 (01) : 67 - 79
  • [36] Bayesian estimation of an autoregressive model using Markov chain Monte Carlo
    Barnett, G
    Kohn, R
    Sheather, S
    JOURNAL OF ECONOMETRICS, 1996, 74 (02) : 237 - 254
  • [37] Bayesian Estimation of Multiple Covariate of Autoregressive (MC-AR) Model
    Kumar J.
    Kumar A.
    Agiwal V.
    Annals of Data Science, 2024, 11 (04) : 1291 - 1301
  • [38] ESTIMATION OF RHO IN FIRST-ORDER AUTOREGRESSIVE MODEL - BAYESIAN APPROACH
    LENTON, RL
    RODRIGUEZ-ITURBE, I
    SCHAAKE, JC
    WATER RESOURCES RESEARCH, 1974, 10 (02) : 227 - 241
  • [39] Bayesian estimation for first-order autoregressive model with explanatory variables
    Yang, Kai
    Wang, Dehui
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2017, 46 (22) : 11214 - 11227
  • [40] A Smooth Transition Autoregressive Model for Matrix-Variate Time Series
    Bucci, Andrea
    COMPUTATIONAL ECONOMICS, 2024, 65 (1) : 429 - 458