Bayesian estimation and model selection of a multivariate smooth transition autoregressive model

被引:0
|
作者
Livingston, Glen, Jr. [1 ]
Nur, Darfiana [2 ]
机构
[1] Univ Newcastle, Sch Math & Phys Sci, Callaghan, NSW 2308, Australia
[2] Flinders Univ S Australia, Coll Sci & Engn, Adelaide, SA, Australia
关键词
Bayesian; icelandic river flow; multivariate time series; paleoclimate; reversible jump MCMC; smooth transition AR;
D O I
10.1002/env.2615
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The multivariate smooth transition autoregressive model with order k (M-STAR)(k) is a nonlinear multivariate time series model able to capture regime changes in the conditional mean. The main aim of this paper is to develop a Bayesian estimation scheme for the M-STAR(k) model that includes the coefficient parameter matrix, transition function parameters, covariance parameter matrix, and the model order k as parameters to estimate. To achieve this aim, the joint posterior distribution of the parameters for the M-STAR(k) model is derived. The conditional posterior distributions are then shown, followed by the design of a posterior simulator using a combination of Markov chain Monte Carlo (MCMC) algorithms that includes the Metropolis-Hastings, Gibbs sampler, and reversible jump MCMC algorithms. Following this, extensive simulation studies, as well as case studies, are detailed at the end.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors
    Bing SU
    Fu-kang ZHU
    Ju HUANG
    [J]. Acta Mathematicae Applicatae Sinica, 2023, 39 (04) : 972 - 989
  • [2] Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors
    Bing Su
    Fu-kang Zhu
    Ju Huang
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2023, 39 : 972 - 989
  • [3] Bayesian Estimation and Model Selection for the Spatiotemporal Autoregressive Model with Autoregressive Conditional Heteroscedasticity Errors
    Su, Bing
    Zhu, Fu-kang
    Huang, Ju
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2023, 39 (04): : 972 - 989
  • [4] Bayesian estimation and model selection of multivariate linear model with polytomous variables
    Song, XY
    Lee, SY
    [J]. MULTIVARIATE BEHAVIORAL RESEARCH, 2002, 37 (04) : 453 - 477
  • [5] Smooth transition autoregressive models - New approaches to the model selection problem
    Maringer, Dietmar G.
    Meyer, Mark
    [J]. STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2008, 12 (01):
  • [6] Tractable Bayesian estimation of smooth transition vector autoregressive models
    Bruns, Martin
    Piffer, Michele
    [J]. ECONOMETRICS JOURNAL, 2024,
  • [7] Bayesian inference for smooth transition autoregressive (STAR) model: A prior sensitivity analysis
    Livingston, Glen, Jr.
    Nur, Darfiana
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2017, 46 (07) : 5440 - 5461
  • [8] Estimation and model selection of higher-order spatial autoregressive model: An efficient Bayesian approach
    Han, Xiaoyi
    Hsieh, Chih-Sheng
    Lee, Lung-fei
    [J]. REGIONAL SCIENCE AND URBAN ECONOMICS, 2017, 63 : 97 - 120
  • [9] Bayesian Model Selection for Beta Autoregressive Processes
    Casarin, Roberto
    Dalla Valle, Luciana
    Leisen, Fabrizio
    [J]. BAYESIAN ANALYSIS, 2012, 7 (02): : 385 - 409
  • [10] Recursive Bayesian Estimation of Respiratory Motion using a Modified Autoregressive Transition Model
    Abd Rahni, Ashrani Aizzuddin
    Lewis, Emma
    Wells, Kevin
    [J]. MEDICAL IMAGING 2013: IMAGE PROCESSING, 2013, 8669