Integral-Type Operators from F(p,q,s) Spaces to Zygmund-Type Spaces on the Unit Ball

被引:5
|
作者
Yang, Congli [1 ,2 ]
机构
[1] Guizhou Normal Univ, Dept Math & Comp Sci, Guiyang 550001, Peoples R China
[2] Univ Eastern Finland, Dept Math & Phys, Joensuu 80101, Finland
基金
芬兰科学院;
关键词
EXTENDED CESARO OPERATORS; BLOCH-TYPE SPACES;
D O I
10.1155/2010/789285
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H (B) denote the space of all holomorphic functions on the unit ball B. Cn. This paper investigates the following integral-type operator with symbol g is an element of H(B), T(g)f(z) integral(1)(0)f(tz )Rg(tz)dt/t, f is an element of H(B), z is an element of B, where Rg(z) = Sigma(n)(j=1)z(j)partial derivative g/partial derivative z(j) (z) is the radial derivative of g. We characterize the boundedness and compactness of the integral-type operators T-g from general function spaces F(p,q,s) to Zygmund-type spaces Z(mu), where mu is normal function on [0, 1).
引用
收藏
页数:14
相关论文
共 50 条