Integral-type operators from Bloch-type spaces to Zygmund-type spaces

被引:68
|
作者
Li, Songxiao [1 ]
Stevic, Stevo [2 ]
机构
[1] JiaYing Univ, Dept Math, Meizhou 514015, Guangdong, Peoples R China
[2] Serbian Acad Sci, Math Inst, Belgrade 11000, Serbia
关键词
Integral-type operators; Bloch-type space; Zygmund-type space; Boundedness; Compactness; EXTENDED CESARO OPERATORS; RIEMANN-STIELTJES OPERATORS; MIXED NORM SPACE; UNIT BALL; H-INFINITY; COMPACTNESS; BOUNDEDNESS;
D O I
10.1016/j.amc.2009.05.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H(B) denote the space of all holomorphic functions on the unit ball B subset of C-n. This paper investigates the following integral-type operator with symbol g is an element of H(B) T-g(f) (z) = integral(1)(0) f(tz) Rg (tz) dt/t, f is an element of H(B), z is an element of B, where Rg(z) = Sigma(n)(j-1) z(j) partial derivative g/partial derivative z(j) (z) is the radial derivative of g. The boundedness and compactness of the operator T-g from Bloch-type spaces to Zygmund-type spaces are studied. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:464 / 473
页数:10
相关论文
共 50 条