Predicting the Mechanical Properties of Zeolite Frameworks by Machine Learning

被引:140
|
作者
Evans, Jack D. [1 ]
Couder, Francois-Xavier [1 ]
机构
[1] PSL Res Univ, Chim ParisTech, CNRS, Inst Rech Chim Paris, F-75005 Paris, France
关键词
FORCE-FIELDS; ALUMINOPHOSPHATES; AUXETICITY; DERIVATION; DISCOVERY; SILICAS; SETS;
D O I
10.1021/acs.chemmater.7b02532
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We show here that machine learning is a powerful new tool for predicting the elastic response of zeolites. We built our machine learning approach relying on geometric features only, which are related to local geometry, structure, and porosity of a zeolite, to predict bulk and shear moduli of zeolites with an accuracy exceeding that of force field approaches. The development of this model has illustrated clear correlations between characteristic features of a zeolite and elastic moduli, providing exceptional insight into the mechanics of zeolitic frameworks. Finally, we employ this methodology to predict the elastic response of 590 448 hypothetical zeolites, and the results of this massive database provide clear evidence of stability trends in porous materials.
引用
收藏
页码:7833 / 7839
页数:7
相关论文
共 50 条
  • [31] Machine Learning-Based Modeling with Optimization Algorithm for Predicting Mechanical Properties of Sustainable Concrete
    Shah, Muhammad Izhar
    Memon, Shazim Ali
    Khan Niazi, Muhammad Sohaib
    Amin, Muhammad Nasir
    Aslam, Fahid
    Javed, Muhammad Faisal
    [J]. ADVANCES IN CIVIL ENGINEERING, 2021, 2021
  • [32] Machine learning insights into predicting biogas separation in metal-organic frameworks
    Cooley, Isabel
    Boobier, Samuel
    Hirst, Jonathan D.
    Besley, Elena
    [J]. COMMUNICATIONS CHEMISTRY, 2024, 7 (01)
  • [33] Machine learning in predicting mechanical behavior of additively manufactured parts
    Nasiri, Sara
    Khosravani, Mohammad Reza
    [J]. JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 14 : 1137 - 1153
  • [34] Predicting the Mechanical Behavior of a Bioinspired Nanocomposite through Machine Learning
    Yang, Xingzi
    Gao, Wei
    Wang, Xiaodu
    Zeng, Xiaowei
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2024, 140 (02): : 1299 - 1313
  • [35] Predicting Hypothetical Zeolite Frameworks Using Program FraGen
    Lu Jun-Ran
    Li Yi
    Yu Ji-Hong
    Lu Ying
    [J]. ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (08) : 1661 - U413
  • [36] Interpretable machine learning for materials discovery: Predicting CO2 adsorption properties of metal-organic frameworks
    Teng, Yukun
    Shan, Guangcun
    [J]. APL MATERIALS, 2024, 12 (08):
  • [37] Machine Learning Models for Predicting Zirconocene Properties and Barriers
    Kirkland, Justin K.
    Kumawat, Jugal
    Shaban Tameh, Maliheh
    Tolman, Tyson
    Lambert, Allison C.
    Lief, Graham R.
    Yang, Qing
    Ess, Daniel H.
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (03) : 775 - 784
  • [38] Predicting Thermal Properties of Crystals Using Machine Learning
    Tawfik, Sherif Abdulkader
    Isayev, Olexandr
    Spencer, Michelle J. S.
    Winkler, David A.
    [J]. ADVANCED THEORY AND SIMULATIONS, 2020, 3 (02)
  • [39] Machine learning for predicting protein properties: A comprehensive review
    Wang, Yizhen
    Zhang, Yanyun
    Zhan, Xuhui
    He, Yuhao
    Yang, Yongfu
    Cheng, Li
    Alghazzawi, Daniyal
    [J]. NEUROCOMPUTING, 2024, 597
  • [40] Machine learning for predicting microfluidic droplet generation properties
    Solanki, S.
    Lee, S.
    Jebakumar, A.
    Lum, J.
    Hamidi-Haines, M.
    Denison, C.
    Sundheim, M.
    Schauer, K.
    Stevenson, P.
    Hintzman, J.
    Torniainen, E.
    [J]. COMPUTERS & FLUIDS, 2022, 247