Advances in simulation of wave interactions with extended MHD phenomena

被引:5
|
作者
Batchelor, D. [1 ]
Abla, G. [6 ]
D'Azevedo, E. [1 ,2 ]
Bateman, G.
Bernholdt, D. E. [1 ]
Berry, L. [1 ]
Bonoli, P.
Bramley, R. [4 ]
Breslau, J.
Chance, M.
Chen, J. [5 ]
Choi, M. [6 ]
Elwasif, W. [1 ]
Foley, S. [4 ]
Fu, G. [5 ]
Harvey, R. [7 ]
Jaeger, E. [1 ]
Jardin, S.
Jenkins, T. [10 ]
Keyes, D. [8 ]
Klasky, S.
Kruger, S. [1 ,9 ]
Ku, L. [5 ]
Lynch, V. [1 ]
McCune, D. [5 ]
Ramos, J. [3 ]
Schissel, D. [6 ]
Schnack, D. [10 ]
Wright, J. [3 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[2] Lehigh Univ, Bethlehem, PA 18015 USA
[3] MIT, Plasma Sci & Fus Ctr, Cambridge, MA 02139 USA
[4] Indiana Univ, Bloomington, IN USA
[5] Princeton Plasma Phys Lab, Princeton, NJ USA
[6] Gen Atom, San Diego, CA USA
[7] CompX Int, Dallas, TX USA
[8] Columbia Univ, New York, NY 10027 USA
[9] Tech X Corp, Boulder, CO USA
[10] Univ Wisconsin, Madison, WI USA
关键词
TRANSPORT;
D O I
10.1088/1742-6596/180/1/012054
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Integrated Plasma Simulator (IPS) provides a framework within which some of the most advanced, massively-parallel fusion modeling codes can be interoperated to provide a detailed picture of the multi-physics processes involved in fusion experiments. The presentation will cover four topics: 1) recent improvements to the IPS, 2) application of the IPS for very high resolution simulations of ITER scenarios, 3) studies of resistive and ideal MHD stability in tokamk discharges using IPS facilities, and 4) the application of RF power in the electron cyclotron range of frequencies to control slowly growing MHD modes in tokamaks and initial evaluations of optimized location for RF power deposition.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Lumps and interactions, fission and fusion phenomena in multi solitons of extended Shallow Water Wave of (2+1)-dimensions
    Alsufi, Nizar Abdallah
    Fatima, Nahid
    Noor, Adeeb
    Gorji, M. R.
    Alam, Mohammad Mahtab
    CHAOS SOLITONS & FRACTALS, 2023, 170
  • [22] Advances in direct numerical simulation for MHD modeling of free surface flows
    Satake, S
    Kunugi, T
    Smolentsev, S
    FUSION ENGINEERING AND DESIGN, 2002, 61-62 : 95 - 102
  • [23] Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump
    Chatterjee, Dipankar
    Amiroudine, Sakir
    BIOMEDICAL MICRODEVICES, 2011, 13 (01) : 147 - 157
  • [24] Lattice Boltzmann simulation of thermofluidic transport phenomena in a DC magnetohydrodynamic (MHD) micropump
    Dipankar Chatterjee
    Sakir Amiroudine
    Biomedical Microdevices, 2011, 13 : 147 - 157
  • [25] COMPUTER-SIMULATION OF PERPENDICULAR, MHD SHOCK-WAVE
    PITTMAN, TL
    PHILLIPS, PE
    NIELSEN, P
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1978, 23 (07): : 753 - 753
  • [26] MHD simulation of the shock wave event on October 24, 2003
    Ogina, T.
    Kajiwara, Y.
    Nakao, A.
    Park, K. S.
    Fukazawa, K.
    Yi, Y.
    ACTA ASTRONAUTICA, 2007, 61 (10) : 923 - 931
  • [27] Nonlinear MHD Rossby wave interactions and persistent geomagnetic field structures
    Raphaldini, Breno
    Raupp, Carlos F. M.
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2241):
  • [28] MHD action principles and wave interactions in non-uniform flows
    Webb, G. M.
    Zank, G. R.
    Kaghashvili, E. Kh.
    Ratkiewicz, R. E.
    TURBULENCE AND NONLINEAR PROCESSES IN ASTROPHYSICAL PLASMAS, 2007, 932 : 400 - +
  • [29] RELATIVISTIC MODELING CAPABILITIES IN PERSEUS EXTENDED MHD SIMULATION CODE FOR HED PLASMAS
    Hamlin, Nathaniel D.
    Seyler, Charles E.
    2015 42ND IEEE INTERNATIONAL CONFERENCE ON PLASMA SCIENCES (ICOPS), 2015,
  • [30] Relativistic Modeling Capabilities in PERSEUS Extended MHD Simulation Code for HED Plasmas
    Hamlin, Nathaniel D.
    Seyler, Charles E.
    9TH INTERNATIONAL CONFERENCE ON DENSE Z PINCHES, 2014, 1639 : 80 - 83