Local properties for weak solutions of nonlocal heat equations

被引:7
|
作者
Kim, Yong-Cheol [1 ,2 ]
机构
[1] Korea Univ, Dept Math Educ, Seoul 02841, South Korea
[2] Korea Inst Adv Study, Sch Math, Seoul 02455, South Korea
基金
新加坡国家研究基金会;
关键词
INEQUALITY; REGULARITY;
D O I
10.1016/j.na.2019.111689
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, using the De Giorgi-Nash-Moser theory, we obtain an interior parabolic Holder regularity for weak solutions of nonlocal heat equations given by an integro-differential operator L-K as follows; {LKu+partial derivative tu = 0 in Omega x (-T,0] u=g in ((R-n\Omega)x(-T,0])boolean OR(Omega x{t=-T}) where g is an element of C(R(n)x[-T, 0]) boolean AND L-infinity(R(n)x(-T, 0]) boolean AND H-T(s) (R-n) and Omega subset of R-n is a bounded domain with Lipschitz boundary. In addition, we get the local boundedness of such weak solutions. (C) 2019 Elsevier Ltd. All rights reserved.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Regularity of weak solutions for mixed local and nonlocal double phase parabolic equations
    Shang, Bin
    Zhang, Chao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 378 : 792 - 822
  • [2] Three Weak Solutions for Nonlocal Fractional Equations
    Bisci, Giovanni Molica
    Pansera, Bruno Antonio
    ADVANCED NONLINEAR STUDIES, 2014, 14 (03) : 619 - 629
  • [3] On Weak and Viscosity Solutions of Nonlocal Double Phase Equations
    Fang, Yuzhou
    Zhang, Chao
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, : 3746 - 3789
  • [4] Three Weak Solutions for Nonlocal Fractional Laplacian Equations
    Yang, Dandan
    Bai, Chuanzhi
    ABSTRACT AND APPLIED ANALYSIS, 2014,
  • [5] LOCAL AND NONLOCAL PROPERTIES OF DIFFERENTIAL EQUATIONS
    FRIEDRIC.KO
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 16 (01): : 308 - &
  • [6] Blowup of solutions for nonlinear nonlocal heat equations
    Biler, Piotr
    MONATSHEFTE FUR MATHEMATIK, 2019, 189 (04): : 611 - 624
  • [7] Blowup of solutions for nonlinear nonlocal heat equations
    Piotr Biler
    Monatshefte für Mathematik, 2019, 189 : 611 - 624
  • [8] Weak solutions for random nonlinear parabolic equations of nonlocal type
    Coayla-Teran, Edson A.
    Ferreira, J.
    Magalhaes, P. M. D.
    RANDOM OPERATORS AND STOCHASTIC EQUATIONS, 2008, 16 (03) : 213 - 223
  • [9] QUALITATIVE PROPERTIES OF WEAK SOLUTIONS FOR p-LAPLACIAN EQUATIONS WITH NONLOCAL SOURCE AND GRADIENT ABSORPTION
    Chaouai, Zakariya
    El Hachimi, Abderrahmane
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2020, 57 (04) : 1003 - 1031
  • [10] Local Approximation of Arbitrary Functions by Solutions of Nonlocal Equations
    Serena Dipierro
    Ovidiu Savin
    Enrico Valdinoci
    The Journal of Geometric Analysis, 2019, 29 : 1428 - 1455