On Weak and Viscosity Solutions of Nonlocal Double Phase Equations

被引:17
|
作者
Fang, Yuzhou [1 ]
Zhang, Chao [1 ,2 ]
机构
[1] Harbin Inst Technol, Sch Math, Harbin 150001, Peoples R China
[2] Harbin Inst Technol, Inst Adv Study Math, Harbin 150001, Peoples R China
基金
中国国家自然科学基金;
关键词
FRACTIONAL P-LAPLACIAN; HOLDER REGULARITY; MINIMIZERS;
D O I
10.1093/imrn/rnab351
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the nonlocal double phase equation P.V. integral(Rn) vertical bar u(x) - u(Y)(p-2)(u(x)) - u(y))K-sp(X,Y)dY + P.V. integral(Rn) a(x,y)vertical bar u(x) - u(Y)vertical bar(q-2)(u(X) - u(Y))K-tq(X,Y) dY = 0 where 1 < p <= q and the modulating coefficient a(. , .) >= 0. Under some suitable hypotheses, we first use the De Giorgi-Nash-Moser methods to derive the local Holder continuity for bounded weak solutions and then establish the relationship between weak solutions and viscosity solutions to such equations.
引用
收藏
页码:3746 / 3789
页数:44
相关论文
共 50 条
  • [1] Regularity of weak solutions for mixed local and nonlocal double phase parabolic equations
    Shang, Bin
    Zhang, Chao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 378 : 792 - 822
  • [2] SELF-IMPROVING INEQUALITIES FOR BOUNDED WEAK SOLUTIONS TO NONLOCAL DOUBLE PHASE EQUATIONS
    Scott, James M.
    Mengesha, Tadele
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2022, 21 (01) : 183 - 212
  • [3] Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation
    Fang, Yuzhou
    Radulescu, Vicentiu D.
    Zhang, Chao
    MATHEMATISCHE ANNALEN, 2024, 388 (03) : 2519 - 2559
  • [4] Equivalence of weak and viscosity solutions for the nonhomogeneous double phase equation
    Yuzhou Fang
    Vicenţiu D. Rădulescu
    Chao Zhang
    Mathematische Annalen, 2024, 388 : 2519 - 2559
  • [5] Regularity and stability of finite energy weak solutions for the Camassa–Holm equations with nonlocal viscosity
    Zaihui Gan
    Qing Guo
    Yong Lu
    Calculus of Variations and Partial Differential Equations, 2021, 60
  • [6] Maximum Principles for Nonlocal Double Phase Equations and Monotonicity of Solutions
    Xiong, Qi
    Zhang, Zhenqiu
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (06)
  • [7] Maximum Principles for Nonlocal Double Phase Equations and Monotonicity of Solutions
    Qi Xiong
    Zhenqiu Zhang
    Mediterranean Journal of Mathematics, 2021, 18
  • [8] H?lder regularity for weak solutions to nonlocal double phase problems
    Byun, Sun -Sig
    Ok, Jihoon
    Song, Kyeong
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2022, 168 : 110 - 142
  • [9] Regularity and stability of finite energy weak solutions for the Camassa-Holm equations with nonlocal viscosity
    Gan, Zaihui
    Guo, Qing
    Lu, Yong
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [10] Three Weak Solutions for Nonlocal Fractional Equations
    Bisci, Giovanni Molica
    Pansera, Bruno Antonio
    ADVANCED NONLINEAR STUDIES, 2014, 14 (03) : 619 - 629