Nitrogen-doped MoS2/carbon as highly oxygen-permeable and stable catalysts for oxygen reduction reaction in microbial fuel cells

被引:130
|
作者
Hao, Liang [1 ]
Yu, Jia [2 ]
Xu, Xin [1 ]
Yang, Liu [1 ]
Xing, Zipeng [1 ]
Dai, Ying [3 ]
Sun, Ye [1 ]
Zou, Jinlong [1 ]
机构
[1] Heilongjiang Univ, Sch Chem & Mat Sci, Minist Educ Peoples Republ China, Key Lab Funct Inorgan Mat Chem, Harbin 150080, Peoples R China
[2] Harbin Engn Univ, Coll Aerosp & Civil Engn, Harbin, Peoples R China
[3] Heilongjiang Inst Technol, Sch Civil Engn, Harbin 150050, Peoples R China
基金
中国国家自然科学基金;
关键词
Dissolved oxygen; Honeycomb structure; Molybdenum disulfide; Nitrogen doping; Oxygen permeation; Stability; ROLLING ACTIVATED CARBON; REDUCED GRAPHENE OXIDE; WASTE-WATER TREATMENT; ELECTROCHEMICAL PERFORMANCE; GRAPHITIZED CARBON; CATHODE CATALYSTS; AIR-CATHODE; MOS2; LAYER; ELECTROCATALYSTS;
D O I
10.1016/j.jpowsour.2016.11.041
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Developing non-noble metal catalysts with high oxygen-permeability and activity for oxygen reduction reaction (ORR) is crucial for microbial fuel cells (MFCs). In this study, nitrogen-doped molybdenum di-sulfide/carbon (N-MoS2/C) is prepared using melamine as nitrogen and carbon sources. Ammonium molybdate, thiourea and Pluronic F127 are used as Mo source, S source and surfactant, respectively. Mo-S-melamine complex precursor is obtained through the evaporation-induced self-assembly route, which is then carbonized at 800, 900 and 1000 degrees C to fabricate N-MoS2/C. Defect-rich N-MoS2/C has a large number of exposed active sites and a high oxygen permeability. N-MoS2/C (900 degrees C) with regular honeycomb structure shows the maximum power density of 0.815 W m(-2), which is far higher than that of Pt/C (0.520 W m(-2)) and only has a decline of 1.23% after 1800 h operation in MFCs. Four-electron (4e(-)) reduction of O(2)is the main ORR pathway for N-MoS2/C (900 degrees C), attributing to the efficient permeation, adsorption, activation and reduction of O-2 on the active sites. The synergy among abundant defects, N-species (pyridinic N, graphitic N and Mo-N-x) and high conductivity contributes to the promising ORR activity. This simple synthetic route of N-doped metal sulfides/carbon composites displays a new prospect for preparation of ORR catalyst. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:68 / 79
页数:12
相关论文
共 50 条
  • [41] Synthesis of amorphous and graphitized porous nitrogen-doped carbon spheres as oxygen reduction reaction catalysts
    Wassner, Maximilian
    Eckardt, Markus
    Reyer, Andreas
    Diemant, Thomas
    Elsaesser, Michael S.
    Behm, R. Juergen
    Huesing, Nicola
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 1 - 15
  • [42] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Felix Studt
    Catalysis Letters, 2013, 143 : 58 - 60
  • [43] The Oxygen Reduction Reaction on Nitrogen-Doped Graphene
    Studt, Felix
    CATALYSIS LETTERS, 2013, 143 (01) : 58 - 60
  • [44] Highly Active Wood-Derived Nitrogen-Doped Carbon Catalyst for the Oxygen Reduction Reaction
    Kaare, Katlin
    Yu, Eric
    Volperts, Aleksandrs
    Dobele, Galina
    Zhurinsh, Aivars
    Dyck, Alexander
    Niaura, Gediminas
    Tamasauskaite-Tamasiunaite, Loreta
    Norkus, Eugenijus
    Andrulevicius, Mindaugas
    Danilson, Mati
    Kruusenberg, Ivar
    ACS OMEGA, 2020, 5 (37): : 23578 - 23587
  • [45] Cerium carbide embedded in nitrogen-doped carbon as a highly active electrocatalyst for oxygen reduction reaction
    Wang, Wei
    Xue, Shouyuan
    Li, Jinmei
    Wang, Fengxia
    Kang, Yumao
    Lei, Ziqiang
    JOURNAL OF POWER SOURCES, 2017, 359 : 487 - 493
  • [46] Nitrogen-Doped Carbon Foam: Preparation and Oxygen Reduction Reaction Performance
    Li, Jing-Han
    Song, Ya-Cheng
    Zhou, Ya-Zhou
    Cheng, Xiao-Nong
    Yang, Juan
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2021, 37 (03) : 457 - 464
  • [47] Mechanistic Discussion of the Oxygen Reduction Reaction at Nitrogen-Doped Carbon Nanotubes
    Wiggins-Camacho, Jaclyn D.
    Stevenson, Keith J.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (40): : 20002 - 20010
  • [48] Enhanced oxygen reduction reaction performance of nitrogen-doped carbon nanocages
    Shenggao Wang
    Xujie Wang
    Quanrong Deng
    Yangwu Mao
    Geming Wang
    Journal of Materials Science: Materials in Electronics, 2019, 30 : 6608 - 6616
  • [49] Hierarchically tubular nitrogen-doped carbon structures for the oxygen reduction reaction
    Wei, Wei
    Ge, Hongtao
    Huang, Linsong
    Kuang, Min
    Al-Enizi, Abdullah M.
    Zhang, Lijuan
    Zheng, Gengfeng
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (26) : 13634 - 13638
  • [50] Synthesis of nitrogen-doped graphene and its catalytic activity for the oxygen reduction reaction in fuel cells
    Ma, Gui-Xiang
    Zhao, Jiang-Hong
    Zheng, Jian-Feng
    Zhu, Zhen-Ping
    Xinxing Tan Cailiao/New Carbon Materials, 2012, 27 (04): : 258 - 265