Diversity-based feature selection from neural network with low computational cost

被引:0
|
作者
Kabir, Md. Monirul [1 ]
Shahjahan, Md. [3 ]
Murase, Kazuyuki [1 ,2 ]
机构
[1] Univ Fukui, Grad Sch Engn, Dept Human & Artificial Intelligence Syst, Bunkyo 3-9-1, Fukui 9108507, Japan
[2] Univ Fukui, Res & Educ Program Life Sci, Fukui, Japan
[3] Khulna Univ Engn & Technol, Dept Elect & Elect Engn, Khulna, Bangladesh
来源
关键词
diversity; feature selection; neural network; classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach to identify the activity of input attributes efficiently in the wrapper model of feature selection. The relevant features are selected by the diversity among the inputs of the neural network and the entire process is done depending on several criteria. While the most of existing feature selection methods use all input attributes by examining network performance, we use here only the attributes having relatively high possibilities to contribute to the network performance knowing preceding assumptions. The proposed diversity-based feature selection method (DFSM) can therefore significantly reduce the size of hidden layer priori to feature selection process without degrading the network performance. We tested DFSM to several real world benchmark problems and the experimental results confirmed that it could select a small number of relevant features with good classification accuracies.
引用
收藏
页码:1017 / +
页数:2
相关论文
共 50 条
  • [21] Feature extraction and selection of neural network
    Wu, CD
    Gao, F
    Ma, SH
    PROCEEDINGS OF THE 3RD WORLD CONGRESS ON INTELLIGENT CONTROL AND AUTOMATION, VOLS 1-5, 2000, : 1103 - 1106
  • [22] Network Intrusion Detection using Diversity-based Centroid Mechanism
    Gondal, Muhammad Shafique
    Malik, Arif Jamal
    Khan, Farrukh Aslam
    2015 12TH INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY - NEW GENERATIONS, 2015, : 224 - 228
  • [23] DIVERSITY-BASED CLASSIFIER SELECTION FOR BREAST CANCER CYTOLOGICAL IMAGE ANALYSIS
    Krawczyk, Bartosz
    Filipczuk, Pawel
    Wozniak, Michal
    Obuchowicz, Andrzej
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2014, 26 (01):
  • [24] Sensor Fault Detection with Low Computational Cost: A Proposed Neural Network-based Control Scheme
    Michail, Konstantinos
    Deliparaschos, Kyriakos M.
    2012 IEEE 17TH CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION (ETFA), 2012,
  • [25] BP Neural Network Feature Selection Method Based on Sensitivity Analysis
    Dun, Yuqing
    Chen, Li
    Liu, Jing
    Chen, Qiang
    ADVANCING KNOWLEDGE DISCOVERY AND DATA MINING TECHNOLOGIES, PROCEEDINGS, 2009, : 451 - 455
  • [26] BP Neural Network Feature Selection Based on Group Lasso Regularization
    Liu, Tiqian
    Xiao, Jiang-Wen
    Huang, Zhengyi
    Kong, Erdan
    Liang, Yuntao
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2786 - 2790
  • [27] Fault diagnosis for machinery based on feature selection and probabilistic neural network
    Li H.
    Zhao J.
    Zhang X.
    Ni X.
    Li, Haiping (hp_li@hotmail.com), 1600, Totem Publishers Ltd (13): : 1165 - 1170
  • [28] A Comparison of Feature Selection Techniques for Neural Network Based Load Forecasting
    Panapakidis, Ioannis P.
    Bouhouras, Aggelos S.
    Christoforidis, Georgios C.
    2019 54TH INTERNATIONAL UNIVERSITIES POWER ENGINEERING CONFERENCE (UPEC), 2019,
  • [29] New feature Selection method based on neural network and machine learning
    Challita, Nicole
    Khalil, Mohamad
    Beauseroy, Pierre
    2016 IEEE INTERNATIONAL MULTIDISCIPLINARY CONFERENCE ON ENGINEERING TECHNOLOGY (IMCET), 2016, : 81 - 84
  • [30] Evaluation of feature selection methods based on artificial neural network weights
    da Costa, Nattane Luiza
    de Lima, Marcio Dias
    Barbosa, Rommel
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 168