Photocatalytic and Photoelectrocatalytic Water Splitting by Porous g-C3N4 Nanosheets for Hydrogen Generation

被引:71
|
作者
Mehtab, Amir [1 ,2 ]
Alshehri, Saad M. [3 ]
Ahmad, Tokeer [1 ]
机构
[1] Jamia Millia Islamia, Dept Chem, Nanochem Lab, New Delhi 110025, India
[2] Texas A&M Univ, Dept Chem, College Stn, TX 77843 USA
[3] King Saud Univ, Coll Sci, Dept Chem, Riyadh 11451, Saudi Arabia
关键词
g-C; 3; N; 4; photocatalysis; photoelectrocatalysis; hydrogen generation; sacrificial agents; apparent quantum yield; Faradaic efficiency; SOLAR-ENERGY CONVERSION; EVOLUTION; OXIDATION;
D O I
10.1021/acsanm.2c02460
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
electrochemical water splitting is an ultimate source of hydrogen generation for tackling the ongoing fuel crisis. In this context, we nontoxic semiconductor through the polycondensation method. In the present work, we have discussed the major changes in the morphology of g-C3N4 after acidic exfoliation thoroughly by using transmission electron microscopy (TEM) and scanning electron microscopy (SEM) studies. The chemical purity of the assynthesized materials was analyzed by using powder X-ray diffraction (PXRD). The specific surface area and porosity of the materials were obtained through Brunner-Emmet-Teller (BET) surface area studies. Besides this, the electronic structure of g-C3N4 was discussed through X-ray absorption near-edge spectroscopy (XANES), and the elemental composition was determined by using X-ray photoelectron spectroscopy (XPS). Moreover, the dependency of the sacrificial agents of g-C3N4 was discussed in detail by using sodium sulfide/sodium sulfite (Na2S/Na2SO3) and triethanolamine (TEOA). It was observed that exfoliated g-C3N4 shows remarkable hydrogen evolution in the presence of TEOA and an efficient quantum yield up to 12%, which is 1.7-fold higher than in the presence of Na2S/Na2SO3 (7%). Furthermore, to harness most of the solar light spectrum, a high current density and improved Faradaic efficiency during the photoelectrocatalysis have been reported.
引用
收藏
页码:12656 / 12665
页数:10
相关论文
共 50 条
  • [41] Solar photocatalytic hydrogen production of g-C3N4/KTaO3 heterojunction for water splitting via interface engineering
    Li, Jincan
    Yuan, Changlai
    Liu, Xiao
    Zhang, Tianjin
    Su, Kaiyuan
    Xu, Jiwen
    Zhu, Baohua
    Zhou, Changrong
    Rao, Guanghui
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2023, 34 (12)
  • [42] Solar photocatalytic hydrogen production of g-C3N4/KTaO3 heterojunction for water splitting via interface engineering
    Jincan Li
    Changlai Yuan
    Xiao Liu
    Tianjin Zhang
    Kaiyuan Su
    Jiwen Xu
    Baohua Zhu
    Changrong Zhou
    Guanghui Rao
    Journal of Materials Science: Materials in Electronics, 2023, 34
  • [43] Synthesis and modification strategies of g-C3N4 nanosheets for photocatalytic applications
    Chen, Long
    Maigbay, Michael A.
    Li, Miao
    Qiu, Xiaoqing
    ADVANCED POWDER MATERIALS, 2024, 3 (01):
  • [44] Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation
    Ding, Jianjun
    Sun, Xuxu
    Wang, Qi
    Li, Dong-sheng
    Li, Xiangyang
    Li, Xiaoxiao
    Chen, Lin
    Zhang, Xian
    Tian, Xingyou
    Ostrikov, Kostya
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [45] The g-C3N4 Nanosheets Separated by PS for Photocatalytic Degradation of Dye
    Yu, Qingbo
    Fang, Songhui
    Wang, Xiaoze
    JOURNAL OF NANO RESEARCH, 2017, 49 : 215 - 224
  • [46] Metal free S-scheme heterojunction S-doped g-C3N4/g-C3N4 for enhanced photocatalytic water splitting
    Nagar, Om Prakash
    Barman, Tripti
    Marumoto, Kazuhiro
    Shimoi, Yukihiro
    Matsuishi, Kiyoto
    Chouhan, Neelu
    International Journal of Hydrogen Energy, 2024, 87 : 526 - 538
  • [47] Photocatalytic Degradation of Organic Pollutants Using Porous g-C3N4 Nanosheets Decorated with Gold Nanoparticles
    Cong, Hongjin
    Li, Xinyi
    He, Tingting
    Wang, Liyan
    Zhao, Chenkai
    Wang, Shiyu
    Zhao, Yang
    Song, Hua
    Wang, Huan
    CHEMISTRYSELECT, 2021, 6 (35): : 9458 - 9466
  • [48] Ag Loading Enhanced Photocatalytic Activity of g-C3N4 Porous Nanosheets for Decomposition of Organic Pollutants
    Qi, Kezhen
    Li, Yi
    Xie, Yubo
    Liu, Shu-yuan
    Zheng, Kun
    Chen, Zhe
    Wang, Ruidan
    FRONTIERS IN CHEMISTRY, 2019, 7
  • [49] Facile Gel-Based Morphological Control of Ag/g-C3N4 Porous Nanofibers for Photocatalytic Hydrogen Generation
    Wang, Jiangpeng
    Cong, Jingkun
    Xu, Hui
    Wang, Jinming
    Liu, Hong
    Liang, Mei
    Gao, Junkuo
    Ni, Qingqing
    Yao, Juming
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2017, 5 (11): : 10633 - 10639
  • [50] g-C3N4 photoanode for photoelectrocatalytic synergistic pollutant degradation and hydrogen evolution
    Zhao, Xiaolong
    Pan, Donglai
    Chen, Xiaofeng
    Li, Ruping
    Jiang, Tiange
    Wang, Wenchao
    Li, Guisheng
    Leung, Dennis Y. C.
    APPLIED SURFACE SCIENCE, 2019, 467 : 658 - 665