Computing the intrinsic camera parameters using Pascal's theorem

被引:0
|
作者
Rosenhahn, B [1 ]
Bayro-Corrochano, E [1 ]
机构
[1] Univ Kiel, Inst Informat & Prakt Math, D-24105 Kiel, Germany
来源
关键词
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The authors of this paper adopted the characteristics of the image of the absolute conic in terms of Pascal's theorem to propose a new camera calibration method. Employing this theorem in the geometric algebra framework enables the authors to compute a projective invariant using the conics of only two images which expressed using brackets helps us to set enough equations to solve the calibration problem.
引用
收藏
页码:427 / 434
页数:8
相关论文
共 50 条
  • [1] Camera calibration method based on Pascal's theorem
    Wang, Xuechun
    Zhao, Yue
    Yang, Fengli
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2019, 16 (03):
  • [2] Pascal's Theorem
    Tabirca, Sabin
    AMERICAN MATHEMATICAL MONTHLY, 2016, 123 (10): : 1052 - 1052
  • [3] Perspective Correction using Camera Intrinsic Parameters
    Li, Xin
    Liu, Wei
    Fan, Wei
    Sun, Jun
    Satoshi, Naoi
    PROCEEDINGS OF 2016 IEEE 13TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP 2016), 2016, : 854 - 858
  • [4] Linear Determination of a Camera's Intrinsic Parameters Using Two Intersecting Circles
    Xu Chen
    Yue Zhao
    Fu ShengNan
    INTERNATIONAL JOURNAL OF ADVANCED ROBOTIC SYSTEMS, 2014, 11
  • [5] Calibration of Camera Intrinsic Parameters Using A Single Image
    Yan, Kun
    Liu, Enhai
    Tian, Hong
    Zhao, Rujin
    Zhang, Zhuang
    PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON ROBOTICS AND ARTIFICIAL INTELLIGENCE (ICRAI 2017), 2015, : 39 - 45
  • [6] An extension of Pascal's theorem
    Rupp, Charles A.
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1929, 31 (1-4) : 580 - 594
  • [7] Demonstation of Desargues' theorem on the basis of Pascal's theorem
    Hessenberg, G
    MATHEMATISCHE ANNALEN, 1905, 61 : 0161 - 0172
  • [8] Pascal's theorem and quantum deformation
    Leitenberger, F
    LETTERS IN MATHEMATICAL PHYSICS, 2000, 51 (01) : 47 - 53
  • [9] A Hyperbolic Proof of Pascal’s Theorem
    Miguel Acosta
    Jean-Marc Schlenker
    The Mathematical Intelligencer, 2021, 43 : 130 - 133
  • [10] A Hyperbolic Proof of Pascal's Theorem
    Acosta, Miguel
    Schlenker, Jean-Marc
    MATHEMATICAL INTELLIGENCER, 2021, 43 (02): : 130 - 133