Cluster-expanded Prussian blue analogues

被引:224
|
作者
Shores, MP [1 ]
Beauvais, LG [1 ]
Long, JR [1 ]
机构
[1] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
D O I
10.1021/ja983530s
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A method for expanding the pores in crystalline frameworks is demonstrated with the substitution of face-capped octahedral [Re(6)Q(8)(CN)(6)](4-) (Q = Se, Te) clusters into the Prussian blue structure. The clusters react in aqueous solution with Ga3+ and Fe3+, respectively, to precipitate Ga-4[Re6Se8(CN)(6)](3). xH(2)O and Fe-4[Re6Te8(CN)(6)](3). xH(2)O. Rietveld analysis of X-ray powder diffraction data for the former compound confirms the expanded crystal structure, which features large water-filled cavities more than twice the volume of those in Prussian blue. The new materials can be dehydrated without loss of integrity, and maintain crystallinity at temperatures up to 250 or 300 degrees C, further, the increase in void volume is shown to significantly enhance their capacities as molecular sieves and enable absorption of larger alcohol molecules such as ethanol and n-propanol. A soluble form of the black iron-containing phase exhibits a cluster-to-metal charge-transfer band at 736 nm, slightly lower energy than the metal-to-metal charge-transfer band responsible for the color of Prussian blue.
引用
收藏
页码:775 / 779
页数:5
相关论文
共 50 条
  • [21] Cluster-expanded metal-cyanide frameworks: Enhanced properties and unprecedented structures.
    Bennett, MV
    Beauvais, LG
    Shores, MP
    Long, JR
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2000, 220 : U521 - U521
  • [22] Formation of hierarchical NiFe Prussian blue analogues/Prussian blue on nickel foam for superior water oxidation
    Li Wu, Li
    Chen, Xiao Hui
    Zhang, Qing
    Luo, Juan
    Fu, Hong Chuan
    Shen, Li
    Luo, Hong Qun
    Li, Nian Bing
    APPLIED SURFACE SCIENCE, 2021, 567
  • [23] Tuning of disordered local structure in Prussian Blue analogues
    Simonov, Arkadiy
    Kholina, Yevheniia
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2021, 77 : C310 - C310
  • [24] Zero thermal expansion in Prussian blue analogues.
    Prassides, K
    Margadonna, S
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2005, 229 : U1080 - U1080
  • [25] Thermal efficiency of a thermocell made of Prussian blue analogues
    Shibata, Takayuki
    Fukuzumi, Yuya
    Moritomo, Yutaka
    SCIENTIFIC REPORTS, 2018, 8
  • [26] K-Ion Slides in Prussian Blue Analogues
    Cattermull, John
    Roth, Nikolaj
    Cassidy, Simon J.
    Pasta, Mauro
    Goodwin, Andrew L.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2023, 145 (44) : 24249 - 24259
  • [27] Impact of Sodium on the Water Dynamics in Prussian Blue Analogues
    Nielsen, Ida
    Ulander, Alexandra
    Juranyi, Fanni
    Larsen, Simon Rosenqvist
    Karlsson, Maths
    Brant, William R.
    Andersson, Mikael S.
    CHEMISTRY OF MATERIALS, 2024, 36 (22) : 11246 - 11253
  • [28] Prussian blue nanoparticles and their analogues for application to cancer theranostics
    Patra, Chitta Ranjan
    NANOMEDICINE, 2016, 11 (06) : 569 - 572
  • [29] Magnetic Properties of NaKCoFe Prussian Blue Analogues Nanoparticles
    Xu Jian-Feng
    Liu Hui
    Du Xian-Long
    Fang Jian
    Zhao Ji-Hua
    Shen Wei-Guo
    CHINESE JOURNAL OF INORGANIC CHEMISTRY, 2010, 26 (06) : 946 - 950
  • [30] The structures of ordered defects in thiocyanate analogues of Prussian Blue
    Cliffe, Matthew J.
    Keyzer, Evan N.
    Bond, Andrew D.
    Astle, Maxwell A.
    Grey, Clare P.
    CHEMICAL SCIENCE, 2020, 11 (17) : 4430 - 4438