Design and input-shaping control of a novel scanner for high-speed atomic force microscopy

被引:185
|
作者
Schitter, Georg [1 ,2 ]
Thurner, Philipp J. [2 ]
Hansma, Paul K. [2 ]
机构
[1] Delft Univ Technol, Delft Ctr Syst & Control, NL-2628 CD Delft, Netherlands
[2] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
基金
美国国家卫生研究院;
关键词
AFM; fast scanning; nano-positioning; nanotechnology; scanning probe; real-time imaging; mechanical design;
D O I
10.1016/j.mechatronics.2008.02.007
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A novel design of a scanning unit for atomic force microscopy (AFM) is presented that enables scanning speeds three orders of magnitude faster than compared to conventional AFMs. The new scanner is designed for high mechanical resonance frequencies, based on a new scanner design, which is optimized using finite element analysis. For high-speed scanning a new controller, based on input-shaping techniques, has been developed that reduces imaging artifacts due to the scanner's dynamics. The implementation of the new AFM system offers imaging capabilities of several thousand lines per second with a scanning range of 13 mu m in both scanning directions, and the freedom to choose the fast scan-axis in any arbitrary direction in the X-Y-plane. (c) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:282 / 288
页数:7
相关论文
共 50 条
  • [21] High-speed atomic force microscopy in liquid
    Sulchek, T
    Hsieh, R
    Adams, JD
    Minne, SC
    Quate, CF
    Adderton, DM
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2000, 71 (05): : 2097 - 2099
  • [22] Opportunities in High-Speed Atomic Force Microscopy
    Brown, Benjamin P.
    Picco, Loren
    Miles, Mervyn J.
    Faul, Charl F. J.
    SMALL, 2013, 9 (19) : 3201 - 3211
  • [23] MPC in High-speed Atomic Force Microscopy
    Rana, M. S.
    Pota, H. R.
    Petersen, I. R.
    2016 AUSTRALIAN CONTROL CONFERENCE (AUCC), 2016, : 135 - 140
  • [24] High-speed atomic force microscopy: Imaging and force spectroscopy
    Eghiaian, Frederic
    Rico, Felix
    Colom, Adai
    Casuso, Ignacio
    Scheuring, Simon
    FEBS LETTERS, 2014, 588 (19) : 3631 - 3638
  • [25] Model development and control design for high speed atomic force microscopy
    Hatch, AG
    Smith, RC
    De, T
    SMART STRUCTURES AND MATERIALS 2004: MODELING, SIGNAL PROCESSING, AND CONTROL, 2004, 5383 : 457 - 468
  • [26] Technical advances in high-speed atomic force microscopy
    Fukuda, Shingo
    Ando, Toshio
    BIOPHYSICAL REVIEWS, 2023, 15 (06) : 2045 - 2058
  • [27] Nanomanipulator based on a High-speed Atomic Force Microscopy
    Ishisaki, Itsuhachi
    Ohashi, Yuya
    Ushiki, Tatsuo
    Iwata, Futoshi
    PROCEEDINGS OF PRECISION ENGINEERING AND NANOTECHNOLOGY (ASPEN2011), 2012, 516 : 396 - +
  • [28] Technical advances in high-speed atomic force microscopy
    Shingo Fukuda
    Toshio Ando
    Biophysical Reviews, 2023, 15 : 2045 - 2058
  • [29] Biological physics by high-speed atomic force microscopy
    Casuso, Ignacio
    Redondo-Morata, Lorena
    Rico, Felix
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 378 (2186):
  • [30] On Amplitude Estimation for High-Speed Atomic Force Microscopy
    Ragazzon, Michael R. P.
    Gravdahl, J. Tommy
    Fleming, Andrew J.
    2016 AMERICAN CONTROL CONFERENCE (ACC), 2016, : 2635 - 2642