Localization and Computation in an Approximation of Eigenvalues

被引:0
|
作者
Djordjevic, S. V. [1 ]
Kantun-Montiel, G. [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Puebla, Mexico
[2] Fac Ciencias Fisicomatemat, Puebla 72570, Pue, Mexico
关键词
Linear operators; eigenvalue; spectral set;
D O I
10.2298/FIL1501075D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we consider the problem of localization and approximation of eigenvalues of operators on infinite dimensional Banach and Hilbert spaces. This problem has been studied for operators of finite rank but it is seldom investigated in the infinite dimensional case. The eigenvalues of an operator (between infinite dimensional vector spaces) can be positioned in different parts of the spectrum of the operator, even it is not necessary to be isolated points in the spectrum. Also, an isolated point in the spectrum is not necessary an eigenvalue. One method that we can apply is using Weyl's theorem for an operator, which asserts that every point outside the Weyl spectrum is an isolated eigenvalue.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [41] SOME APPROXIMATION FORMULA FOR STOCHASTIC EIGENVALUES
    BARNES, DC
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (04) : 933 - 940
  • [42] Approximation of eigenvalues of boundary value problems
    Mohammed M Tharwat
    Saleh M Al-Harbi
    Boundary Value Problems, 2014
  • [44] APPROXIMATION OF EIGENVALUES OF PROBLEMS WITH ROUGH COEFFICIENTS
    BABUSKA, I
    OSBORN, J
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (07): : A683 - A683
  • [45] Electromagnetic Steklov eigenvalues: approximation analysis
    Halla, Martin
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2021, 55 (01): : 57 - 76
  • [46] Higher approximation of eigenvalues by the sampling method
    Boumenir, A
    BIT, 2000, 40 (02): : 215 - 225
  • [47] Combined approximation for reanalysis of complex eigenvalues
    Ma, Liang
    Chen, Su Huan
    Meng, Guang Wei
    COMPUTERS & STRUCTURES, 2009, 87 (7-8) : 502 - 506
  • [48] Approximation of eigenvalues of boundary value problems
    Tharwat, Mohammed M.
    Al-Harbi, Saleh M.
    BOUNDARY VALUE PROBLEMS, 2014,
  • [49] Computation of multiple eigenvalues of infinite tridiagonal matrices
    Miyazaki, Y
    Asai, N
    Kikuchi, Y
    Cai, DS
    Ikebe, Y
    MATHEMATICS OF COMPUTATION, 2004, 73 (246) : 719 - 730
  • [50] New Sufficient Conditions for the Computation of Generalized Eigenvalues
    Khellaf, A.
    Merchela, W.
    Guebbai, H.
    RUSSIAN MATHEMATICS, 2021, 65 (02) : 65 - 68