Localization and Computation in an Approximation of Eigenvalues

被引:0
|
作者
Djordjevic, S. V. [1 ]
Kantun-Montiel, G. [2 ]
机构
[1] Benemerita Univ Autonoma Puebla, Puebla, Mexico
[2] Fac Ciencias Fisicomatemat, Puebla 72570, Pue, Mexico
关键词
Linear operators; eigenvalue; spectral set;
D O I
10.2298/FIL1501075D
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note we consider the problem of localization and approximation of eigenvalues of operators on infinite dimensional Banach and Hilbert spaces. This problem has been studied for operators of finite rank but it is seldom investigated in the infinite dimensional case. The eigenvalues of an operator (between infinite dimensional vector spaces) can be positioned in different parts of the spectrum of the operator, even it is not necessary to be isolated points in the spectrum. Also, an isolated point in the spectrum is not necessary an eigenvalue. One method that we can apply is using Weyl's theorem for an operator, which asserts that every point outside the Weyl spectrum is an isolated eigenvalue.
引用
收藏
页码:75 / 81
页数:7
相关论文
共 50 条
  • [1] Generalized Spectrum Approximation and Numerical Computation of Eigenvalues for Schrodinger's Operators
    Guebbai, Hamza
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2013, 34 (01) : 45 - 60
  • [2] Pade Approximation Based Method for Computation of Eigenvalues for Time Delay Power System
    Niu, Xinsheng
    Ye, Hua
    Liu, Yutian
    Liu, Xiaoming
    2013 48TH INTERNATIONAL UNIVERSITIES' POWER ENGINEERING CONFERENCE (UPEC), 2013,
  • [3] On the computation of the eigenvalues of Dirac systems
    Annaby, M. H.
    Tharwat, M. M.
    CALCOLO, 2012, 49 (04) : 221 - 240
  • [4] On computation of approximate eigenvalues and eigenvectors
    Kitamoto, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2002, E85A (03) : 664 - 675
  • [5] Computation of eigenvalues by numerical upscaling
    Axel Målqvist
    Daniel Peterseim
    Numerische Mathematik, 2015, 130 : 337 - 361
  • [6] Computation of eigenvalues by numerical upscaling
    Malqvist, Axel
    Peterseim, Daniel
    NUMERISCHE MATHEMATIK, 2015, 130 (02) : 337 - 361
  • [7] On the computation of the eigenvalues of Dirac systems
    M. H. Annaby
    M. M. Tharwat
    Calcolo, 2012, 49 : 221 - 240
  • [8] Computation of eigenvalues of a real matrix
    Rao, S. Chandra Sekhara
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2008, 85 (12) : 1849 - 1863
  • [9] COMPUTATION OF CASIMIR OPERATOR EIGENVALUES
    BOSE, AK
    COMPUTER PHYSICS COMMUNICATIONS, 1983, 28 (03) : 271 - 274
  • [10] The computation and sensitivity of double eigenvalues
    Lippert, RA
    Edelman, A
    ADVANCES IN COMPUTATIONAL MATHEMATICS, 1999, 202 : 353 - 393