Inference for nonsmooth regression curves and surfaces using kernel-based methods

被引:4
|
作者
Gijbels, I [1 ]
机构
[1] Univ Catholique Louvain, Inst Stat, B-1348 Louvain, Belgium
关键词
D O I
10.1016/B978-044451378-6/50013-2
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper we review kernel-based methods for detecting discontinuities in an otherwise smooth regression function or surface. In case of a possible discontinuous curve the interest might be in detecting the discontinuities, their jump sizes and finally to estimate the discontinuous curve. Alternatively, one might be uniquely interested in estimating directly the discontinuous curve preserving the jumps. A brief discussion on available kernel-based methods for testing for a continuous versus a discontinuous regression function, and for detecting discontinuities in regression surfaces is also provided.
引用
下载
收藏
页码:183 / 201
页数:19
相关论文
共 50 条
  • [21] Kernel Map Compression for Speeding the Execution of Kernel-Based Methods
    Arif, Omar
    Vela, Patricio A.
    IEEE TRANSACTIONS ON NEURAL NETWORKS, 2011, 22 (06): : 870 - 879
  • [22] Convergence rate of SVM for kernel-based robust regression
    Wang, Shuhua
    Chen, Zhenlong
    Sheng, Baohuai
    INTERNATIONAL JOURNAL OF WAVELETS MULTIRESOLUTION AND INFORMATION PROCESSING, 2019, 17 (01)
  • [23] Spectral imaging using consumer-level devices and kernel-based regression
    Heikkinen, Ville
    Camara, Clara
    Hirvonen, Tapani
    Penttinen, Niko
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2016, 33 (06) : 1095 - 1110
  • [24] Quantity Distribution Search using Sparse Representation Generated with Kernel-based Regression
    Asahara, Akinori
    Hayashi, Hideki
    GISTAM: PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON GEOGRAPHICAL INFORMATION SYSTEMS THEORY, APPLICATIONS AND MANAGEMENT, 2017, : 209 - 216
  • [25] Structure-Preserving Kernel-Based Meshless Methods for Solving Dissipative PDEs on Surfaces
    Zhengjie Sun
    Leevan Ling
    Meng Chen
    Journal of Scientific Computing, 2025, 102 (3)
  • [26] Robust kernel-based regression with bounded influence for outliers
    Hwang, Sangheum
    Kim, Dohyun
    Jeong, Myong K.
    Yum, Bong-Jin
    JOURNAL OF THE OPERATIONAL RESEARCH SOCIETY, 2015, 66 (08) : 1385 - 1398
  • [27] Reproducing kernel-based functional linear expectile regression
    Liu, Meichen
    Pietrosanu, Matthew
    Liu, Peng
    Jiang, Bei
    Zhou, Xingcai
    Kong, Linglong
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2022, 50 (01): : 241 - 266
  • [28] Kernel-Based Mixture of Experts Models For Linear Regression
    Santarcangelo, Joseph
    Zhang, Xiao-Ping
    2015 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2015, : 1526 - 1529
  • [29] Kernel-based estimation of semiparametric regression in triangular systems
    Martins-Filho, Carlos
    Yao, Feng
    ECONOMICS LETTERS, 2012, 115 (01) : 24 - 27
  • [30] On the Convergence Rate of Kernel-Based Sequential Greedy Regression
    Wang, Xiaoyin
    Wei, Xiaoyan
    Pan, Zhibin
    ABSTRACT AND APPLIED ANALYSIS, 2012,