Semi-supervised Clustering via Pairwise Constrained Optimal Graph

被引:0
|
作者
Nie, Feiping [1 ,2 ]
Zhang, Han [1 ,2 ]
Wang, Rong [1 ,2 ,3 ]
Li, Xuelong [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Comp Sci, Xian 710072, Shaanxi, Peoples R China
[2] Northwestern Polytech Univ, Ctr Opt IMagery Anal & Learning OPTIMAL, Xian 710072, Shaanxi, Peoples R China
[3] Northwestern Polytech Univ, Sch Cybersecur, Xian 710072, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a technique of definitely addressing the pairwise constraints in the semi-supervised clustering. Our method contributes to formulating the cannot-link relations and propagating them over the affinity graph flexibly. The pairwise constrained instances are provably guaranteed to be in the same or different connected components of the graph. Combined with the Laplacian rank constraint, the proposed model learns a Pairwise Constrained structured Optimal Graph (PCOG), from which the specified c clusters supporting the known pairwise constraints are directly obtained. An efficient algorithm invoked by the label propagation is designed to solve the formulation. Additionally, we also provide a compact criterion to acquire the key pairwise constraints for prompting the semi-supervised graph clustering. Substantial experimental results show that the proposed method achieves the significant improvements by using a few prior pairwise constraints.
引用
收藏
页码:3160 / 3166
页数:7
相关论文
共 50 条
  • [41] A new semi-supervised clustering algorithm with pairwise constraints by competitive agglomeration
    Gao, Cui-Fang
    Wu, Xiao-Jun
    APPLIED SOFT COMPUTING, 2011, 11 (08) : 5281 - 5291
  • [42] A classification-based approach to semi-supervised clustering with pairwise constraints
    Smieja, Marek
    Struski, Lukasz
    Figueiredo, Mario A. T.
    NEURAL NETWORKS, 2020, 127 : 193 - 203
  • [43] Semi-supervised clustering guided by pairwise constraints and local density structures
    Long, Zhiguo
    Gao, Yang
    Meng, Hua
    Chen, Yuxu
    Kou, Hui
    PATTERN RECOGNITION, 2024, 156
  • [44] Fast Semi-Supervised Learning With Optimal Bipartite Graph
    He, Fang
    Nie, Feiping
    Wang, Rong
    Hu, Haojie
    Jia, Weimin
    Li, Xuelong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (09) : 3245 - 3257
  • [45] Semi-supervised clustering with deep metric learning and graph embedding
    Xiaocui Li
    Hongzhi Yin
    Ke Zhou
    Xiaofang Zhou
    World Wide Web, 2020, 23 : 781 - 798
  • [46] A Graph-Based Projection Approach for Semi-supervised Clustering
    Yoshida, Tetsuya
    Okatani, Kazuhiro
    KNOWLEDGE MANAGEMENT AND ACQUISITION FOR SMART SYSTEMS AND SERVICES, 2010, 6232 : 1 - 13
  • [47] Semi-supervised Blockmodelling with Pairwise Guidance
    Ganji, Mohadeseh
    Chan, Jeffrey
    Stuckey, Peter J.
    Bailey, James
    Leckie, Christopher
    Ramamohanarao, Kotagiri
    Park, Laurence
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2018, PT II, 2019, 11052 : 158 - 174
  • [48] Semi-supervised clustering with deep metric learning and graph embedding
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (02): : 781 - 798
  • [49] Online Semi-supervised Pairwise Learning
    Khalid, Majdi
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [50] Semi-supervised classification with pairwise constraints
    Gong, Chen
    Fu, Keren
    Wu, Qiang
    Tu, Enmei
    Yang, Jie
    NEUROCOMPUTING, 2014, 139 : 130 - 137