The impact of ultrathin Al2O3 films on the electrical response of p-Ge/Al2O3/HfO2/Au MOS structures

被引:5
|
作者
Botzakaki, M. A. [1 ]
Skoulatakis, G. [2 ]
Kennou, S. [2 ]
Ladas, S. [2 ]
Tsamis, C. [3 ]
Georga, S. N. [1 ]
Krontiras, C. A. [1 ]
机构
[1] Univ Patras, Dept Phys, Rion 26504, Greece
[2] Univ Patras, Dept Chem Engn, Surface Sci Lab, Rion 26504, Greece
[3] NCSR Demokritos, Inst Nanosci & Nanotechnol, Aghia Paraskevi 15310, Greece
关键词
passivation layer; Al2O3; HfO2; ALD; electrical characterization; XPS; Ge-MOS devices; INTERFACE PROPERTIES; THIN-FILMS; GATE; LAYER; DIELECTRICS; CAPACITORS; GROWTH; CMOS; GE;
D O I
10.1088/0022-3727/49/38/385104
中图分类号
O59 [应用物理学];
学科分类号
摘要
It is well known that the most critical issue in Ge CMOS technology is the successful growth of high-k gate dielectrics on Ge substrates. The high interface quality of Ge/high-k dielectric is connected with advanced electrical responses of Ge based MOS devices. Following this trend, atomic layer deposition deposited ultrathin Al2O3 and HfO2 films were grown on p-Ge. Al2O3 acts as a passivation layer between p-Ge and high-k HfO2 films. An extensive set of p-Ge/Al2O3/HfO2 structures were fabricated with Al2O3 thickness ranging from 0.5 nm to 1.5 nm and HfO2 thickness varying from 2.0 nm to 3.0 nm. All structures were characterized by x-ray photoelectron spectroscopy (XPS) and AFM. XPS analysis revealed the stoichiometric growth of both films in the absence of Ge sub-oxides between p-Ge and Al2O3 films. AFM analysis revealed the growth of smooth and cohesive films, which exhibited minimal roughness (similar to 0.2 nm) comparable to that of clean bare p-Ge surfaces. The electrical response of all structures was analyzed by C-V, G-V, C-f, G-f and J-V characteristics, from 80 K to 300 K. It is found that the incorporation of ultrathin Al2O3 passivation layers between p-Ge and HfO2 films leads to superior electrical responses of the structures. All structures exhibit well defined C-V curves with parasitic effects, gradually diminishing and becoming absent below 170 K. D-it values were calculated at each temperature, using both Hill-Coleman and Conductance methods. Structures of p-Ge/0.5 nm Al2O3/2.0 nm HfO2/Au, with an equivalent oxide thickness (EOT) equal to 1.3 nm, exhibit D-it values as low as similar to 7.4 x 10(10) eV(-1) cm(-2). To our knowledge, these values are among the lowest reported. J-V measurements reveal leakage currents in the order of 10(-1) A cm(-2), which are comparable to previously published results for structures with the same EOT. A complete mapping of the energy distribution of D-its into the energy bandgap of p-Ge, from the valence band towards midgap, is also reported. These promising results contribute to the challenge of switching to high-k dielectrics as gate materials for future high-performance metal-oxide-semiconductor field-effect transistors based on Ge substrates. Making the switch to such devices would allow us toexploit its superior properties.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Comparative Investigation of Interfacial Characteristics between HfO2/Al2O3 and Al2O3/HfO2 Dielectrics on AlN/p-Ge Structure
    Kim, Hogyoung
    Yun, Hee Ju
    Choi, Seok
    Choi, Byung Joon
    KOREAN JOURNAL OF MATERIALS RESEARCH, 2019, 29 (08): : 463 - 468
  • [2] Comparison of the Physical and Electrical Properties of HfO2/Al2O3/HfO2/GeOx/Ge and HfO2/Al2O3/GeOx/Ge Gate Stacks
    Tsai, Yi-He
    Chou, Chen-Han
    Li, Hui-Hsuan
    Yeh, Wen-Kuan
    Lino, Yu-Hsien
    Ko, Fu-Hsiang
    Chien, Chao-Hsin
    JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY, 2019, 19 (08) : 4529 - 4534
  • [3] Structural and electrical characterization of Al2O3/HfO2/Al2O3 on strained SiGe
    Wu, D
    Lu, J
    Vainonen-Ahlgren, E
    Tois, E
    Tuominen, M
    Östling, M
    Zhang, SL
    SOLID-STATE ELECTRONICS, 2005, 49 (02) : 193 - 197
  • [4] Gate leakage properties in (Al2O3/HfO2/Al2O3) dielectric of MOS devices
    Nasrallah, S. Abdi-ben
    Bouazra, A.
    Poncet, A.
    Said, M.
    THIN SOLID FILMS, 2008, 517 (01) : 456 - 458
  • [5] Interfacial and electrical characterization of HfO2/Al2O3/InAlAs structures
    Wu, Li-fan
    Zhang, Yu-ming
    Lu, Hong-liang
    Zhang, Yi-men
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2015, 54 (11)
  • [6] Electrical Characterization of ALD Al2O3 and HfO2 Films on Germanium
    Tantraviwat, D.
    Low, Y. H.
    Baine, P. T.
    Mitchell, S. J. N.
    McNeill, D. W.
    Armstrong, B. M.
    Gamble, H. S.
    ADVANCED GATE STACK, SOURCE/DRAIN, AND CHANNEL ENGINEERING FOR SI-BASED CMOS 6: NEW MATERIALS, PROCESSES, AND EQUIPMENT, 2010, 28 (01): : 201 - 207
  • [7] Al2O3 Passivation Effect in HfO2•Al2O3 Laminate Structures Grown on InP Substrates
    Kang, Hang-Kyu
    Kang, Yu-Seon
    Kim, Dae-Kyoung
    Baik, Min
    Song, Jin-Dong
    An, Youngseo
    Kim, Hyoungsub
    Cho, Mann-Ho
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (20) : 17527 - 17536
  • [8] Ultrathin Al2O3 and HfO2 gate dielectrics on surface-nitrided Ge
    Chen, JJH
    Bojarczuk, NA
    Shang, HL
    Copel, M
    Hannon, JB
    Karasinski, J
    Preisler, E
    Banerjee, SK
    Guha, S
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2004, 51 (09) : 1441 - 1447
  • [9] Interface trap characterization of AlN/GaN heterostructure with Al2O3, HfO2, and HfO2/Al2O3 dielectrics
    Kim, Hogyoung
    Yun, Hee Ju
    Choi, Seok
    Choi, Byung Joon
    JOURNAL OF VACUUM SCIENCE & TECHNOLOGY B, 2019, 37 (04):
  • [10] Investigation of the Interface Oxide of Al2O3/HfO2 and HfO2/Al2O3 stacks on GaAs (100) surfaces
    Cho, Young Dae
    Suh, Dong Chan
    Lee, Yongshik
    Ko, Dae-Hong
    Chung, Kwun Bum
    Cho, Mann-Ho
    ADVANCED GATE STACK, SOURCE/DRAIN, AND CHANNEL ENGINEERING FOR SI-BASED CMOS 6: NEW MATERIALS, PROCESSES, AND EQUIPMENT, 2010, 28 (01): : 311 - 314