Rational Points on Homogeneous Varieties and Equidistribution of Adelic Periods

被引:20
|
作者
Gorodnik, Alex [1 ]
Oh, Hee [2 ,3 ]
Borovoi, Mikhail [4 ]
机构
[1] Univ Bristol, Sch Math, Bristol BS8 1TW, Avon, England
[2] Brown Univ, Dept Math, Providence, RI 02912 USA
[3] Korea Inst Adv Study, Seoul, South Korea
[4] Tel Aviv Univ, Sackler Fac Exact Sci, Sch Math Sci, IL-69978 Tel Aviv, Israel
基金
新加坡国家研究基金会; 美国国家科学基金会;
关键词
Manin conjecture; rational points; homogeneous dynamics; unipotent flows; INVARIANT-MEASURES; UNIPOTENT FLOWS; BOUNDED HEIGHT; REPRESENTATIONS; UNITARY; SPACES; COMPACTIFICATIONS; CONJECTURES; INTEGERS; MATRICES;
D O I
10.1007/s00039-011-0113-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let U := L\G be a homogeneous variety defined over a number field K, where G is a connected semisimple K-group and L is a connected maximal semisimple K-subgroup of G with finite index in its normalizer. Assuming that G(K (v) ) acts transitively on U(K (v) ) for almost all places v of K, we obtain an asymptotic for the number of rational points U(K) with height bounded by T as T -> a, and settle new cases of Manin's conjecture for many wonderful varieties. The main ingredient of our approach is the equidistribution of semisimple adelic periods, which is established using the theory of unipotent flows.
引用
收藏
页码:319 / 392
页数:74
相关论文
共 50 条
  • [31] Counting rational points on algebraic varieties
    Browning, TD
    Heath-Brown, DR
    Salberger, P
    DUKE MATHEMATICAL JOURNAL, 2006, 132 (03) : 545 - 578
  • [32] APPROXIMATING RATIONAL POINTS ON TORIC VARIETIES
    McKinnon, David
    Satriano, Matthew
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2021, 374 (05) : 3557 - 3577
  • [33] Varieties with too many rational points
    T. D. Browning
    D. Loughran
    Mathematische Zeitschrift, 2017, 285 : 1249 - 1267
  • [34] Notes on the rational points of Fermat varieties
    Bernardi, D
    Halberstadt, E
    Kraus, A
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2003, 46 (01): : 26 - 38
  • [35] Varieties with too many rational points
    Browning, T. D.
    Loughran, D.
    MATHEMATISCHE ZEITSCHRIFT, 2017, 285 (3-4) : 1249 - 1267
  • [36] Counting rational points on ruled varieties
    McKinnon, D
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 2004, 47 (02): : 264 - 270
  • [37] THE DENSITY OF INTEGER POINTS ON HOMOGENEOUS VARIETIES
    SCHMIDT, WM
    ACTA MATHEMATICA, 1985, 154 (3-4) : 243 - 296
  • [38] Adelic equidistribution of algebraic measures in a resoluble group and Kloosterman sums
    Kowalski, E.
    ARCHIV DER MATHEMATIK, 2007, 88 (03) : 220 - 234
  • [39] Effective good divisibility of rational homogeneous varieties
    Hu H.
    Li C.
    Liu Z.
    Mathematische Zeitschrift, 2023, 305 (3)
  • [40] On Fano complete intersections in rational homogeneous varieties
    Chenyu Bai
    Baohua Fu
    Laurent Manivel
    Mathematische Zeitschrift, 2020, 295 : 289 - 308