Noncommutative fluid dynamics in the Snyder space-time

被引:12
|
作者
Abdalla, M. C. B. [1 ]
Holender, L. [2 ]
Santos, M. A. [3 ]
Vancea, I. V. [2 ]
机构
[1] UNESP Univ Estadual Paulista, Inst Fis Teor, BR-01156970 Sao Paulo, Brazil
[2] Univ Fed Rio de Janeiro UFRRJ, Dept Fis, Grp Fis Teor & Matemat Fis, BR-23890000 Rio De Janeiro, Brazil
[3] Univ Fed Espirito Santo UFES, Dept Fis & Quim, BR-29060900 Vitoria, ES, Brazil
来源
PHYSICAL REVIEW D | 2012年 / 86卷 / 04期
关键词
ENERGY-MOMENTUM TENSOR; RENORMALIZATION; THEOREM; FIELDS;
D O I
10.1103/PhysRevD.86.045019
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In this paper, we construct for the first time the noncommutative fluid with the deformed Poincare invariance. To this end, the realization formalism of the noncommutative spaces is employed and the results are particularized to the Snyder space. The noncommutative fluid generalizes the fluid model in the action functional formulation to the noncommutative space. The fluid equations of motion and the conserved energy-momentum tensor are obtained.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Birefringence and noncommutative structure of space-time
    Maceda, Marco
    Macias, Alfredo
    [J]. PHYSICS LETTERS B, 2011, 705 (1-2) : 157 - 160
  • [22] Particle velocity in noncommutative space-time
    Tamaki, T
    Harada, T
    Miyamoto, U
    Torii, T
    [J]. PHYSICAL REVIEW D, 2002, 66 (10):
  • [23] The Scattering Map on Oppenheimer–Snyder Space-Time
    Fred Alford
    [J]. Annales Henri Poincaré, 2020, 21 : 2031 - 2092
  • [24] Noncommutative differential geometry and the structure of space-time
    Connes, A
    [J]. GEOMETRIC UNIVERSE: SCIENCE, GEOMETRY, AND THE WORK OF ROGER PENROSE, 1998, : 49 - 80
  • [25] On the space-time symmetries of noncommutative gauge theories
    Iorio, A
    Sykora, T
    [J]. INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (17): : 2369 - 2376
  • [26] Noncommutative of space-time and the Relativistic Hydrogen Atom
    Zaim, Slimane
    Delenda, Yazid
    [J]. INTERNATIONAL CONFERENCE ON ADVANCEMENT IN SCIENCE AND TECHNOLOGY 2012 (ICAST): CONTEMPORARY MATHEMATICS, MATHEMATICAL PHYSICS AND THEIR APPLICATIONS, 2013, 435
  • [27] From noncommutative κ-Minkowski to Minkowski space-time
    Freidel, Laurent
    Kowalski-Glikman, Jerzy
    Nowak, Sebastian
    [J]. PHYSICS LETTERS B, 2007, 648 (01) : 70 - 75
  • [28] Scalar field theory in Snyder space-time: alternatives
    Girelli, Florian
    Livine, Etera R.
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2011, (03):
  • [29] Boundaries and the Casimir effect in noncommutative space-time
    Casadio, R.
    Gruppuso, A.
    Harms, B.
    Micu, O.
    [J]. PHYSICAL REVIEW D, 2007, 76 (02)
  • [30] Chiral gauge anomalies on noncommutative space-time
    Martín, CP
    [J]. STRING THEORY, 2002, 607 : 174 - 180