Deep learning-based artificial intelligence applications in prostate MRI: brief summary

被引:26
|
作者
Turkbey, Baris [1 ]
Haider, Masoom A. [2 ,3 ,4 ,5 ]
机构
[1] NCI, Mol Imaging Branch, NIH, Bethesda, MD 20892 USA
[2] Sinai Hlth Syst, Lunenfeld Tanenbaum Res Inst, Toronto, ON, Canada
[3] Univ Hlth Network, Sinai Hlth Syst, Joint Dept Med Imaging, Toronto, ON, Canada
[4] Univ Toronto, Toronto, ON, Canada
[5] Ontario Inst Canc Res, Toronto, ON, Canada
来源
BRITISH JOURNAL OF RADIOLOGY | 2022年 / 95卷 / 1131期
关键词
SEGMENTATION; PERFORMANCE; SYSTEM; DIAGNOSIS; IMPROVES; QUALITY; CANCER;
D O I
10.1259/bjr.20210563
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Prostate cancer (PCa) is the most common cancer type in males in the Western World. MRI has an established role in diagnosis of PCa through guiding biopsies. Due to multistep complex nature of the MRI-guided PCa diagnosis pathway, diagnostic performance has a big variation. Developing artificial intelligence (AI) models using machine learning, particularly deep learning, has an expanding role in radiology. Specifically, for prostate MRI, several AI approaches have been defined in the literature for prostate segmentation, lesion detection and classification with the aim of improving diagnostic performance and interobserver agreement. In this review article, we summarize the use of radiology applications of AI in prostate MRI.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Kesani, Deepak
    Lay, Nathan
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1425 - 1434
  • [2] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Sherif Mehralivand
    Dong Yang
    Stephanie A. Harmon
    Daguang Xu
    Ziyue Xu
    Holger Roth
    Samira Masoudi
    Deepak Kesani
    Nathan Lay
    Maria J. Merino
    Bradford J. Wood
    Peter A. Pinto
    Peter L. Choyke
    Baris Turkbey
    [J]. Abdominal Radiology, 2022, 47 : 1425 - 1434
  • [3] Deep Learning-Based Artificial Intelligence for Mammography
    Yoon, Jung Hyun
    Kim, Eun Kyung
    [J]. KOREAN JOURNAL OF RADIOLOGY, 2021, 22 (08) : 1225 - 1239
  • [4] Artificial intelligence in neuropathology: deep learning-based assessment of tauopathy
    Signaevsky, Maxim
    Prastawa, Marcel
    Farrell, Kurt
    Tabish, Nabil
    Baldwin, Elena
    Han, Natalia
    Iida, Megan A.
    Koll, John
    Bryce, Clare
    Purohit, Dushyant
    Haroutunian, Vahram
    McKee, Ann C.
    Stein, Thor D.
    White, Charles L., III
    Walker, Jamie
    Richardson, Timothy E.
    Hanson, Russell
    Donovan, Michael J.
    Cordon-Cardo, Carlos
    Zeineh, Jack
    Fernandez, Gerardo
    Crary, John F.
    [J]. LABORATORY INVESTIGATION, 2019, 99 (07) : 1019 - 1029
  • [5] Emerging role of deep learning-based artificial intelligence in tumor pathology
    Jiang, Yahui
    Yang, Meng
    Wang, Shuhao
    Li, Xiangchun
    Sun, Yan
    [J]. CANCER COMMUNICATIONS, 2020, 40 (04) : 154 - 166
  • [6] Explainable artificial intelligence for deep learning-based model predictive controllers
    Utama, Christian
    Karg, Benjamin
    Meske, Christian
    Lucia, Sergio
    [J]. 2022 26TH INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2022, : 464 - 471
  • [7] A survey of artificial intelligence/machine learning-based trends for prostate cancer analysis
    Sailunaz, Kashfia
    Bestepe, Deniz
    Alhajj, Lama
    Ozyer, Tansel
    Rokne, Jon
    Alhajj, Reda
    [J]. NETWORK MODELING AND ANALYSIS IN HEALTH INFORMATICS AND BIOINFORMATICS, 2024, 13 (01):
  • [8] Prostate cancer classification from ultrasound and MRI images using deep learning based Explainable Artificial Intelligence
    Hassan, Md Rafiul
    Islam, Md Fakrul
    Uddin, Md Zia
    Ghoshal, Goutam
    Hassan, Mohammad Mehedi
    Huda, Shamsul
    Fortino, Giancarlo
    [J]. FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2022, 127 : 462 - 472
  • [9] Artificial Intelligence and Deep Learning in Sensors and Applications
    Yuan, Shyan-Ming
    Hong, Zeng-Wei
    Cheng, Wai-Khuen
    [J]. SENSORS, 2024, 24 (10)
  • [10] Artificial intelligence and deep learning for biomedical applications
    Khanna, Pritee
    Tanveer, Mohammad
    Prasad, Mukesh
    Lin, Chin-Teng
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2022, 81 (10) : 13137 - 13137