A survey of artificial intelligence/machine learning-based trends for prostate cancer analysis

被引:0
|
作者
Sailunaz, Kashfia [1 ]
Bestepe, Deniz [2 ]
Alhajj, Lama [3 ]
Ozyer, Tansel [4 ]
Rokne, Jon [1 ]
Alhajj, Reda [1 ,2 ,5 ]
机构
[1] Univ Calgary, Dept Comp Sci, Calgary, AB, Canada
[2] Istanbul Medipol Univ, Dept Comp Engn, Istanbul, Turkiye
[3] Istanbul Medipol Univ, Int Sch Med, Istanbul, Turkiye
[4] Ankara Medipol Univ, Dept Comp Engn, Ankara, Turkiye
[5] Univ Southern Denmark, Dept Hlth Informat, Odense, Denmark
关键词
Prostate cancer; Machine learning; Deep learning; Data analysis; Image analysis; SEGMENTATION ALGORITHMS; MRI;
D O I
10.1007/s13721-024-00471-4
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Different types of cancer are more commonly encountered recently. This may be attributed to a variety of reasons, including heredity, changes in the living conditions (food, drinks, pollution, etc.), advancement in technology which allowed for better diagnosis of diseases, among others. Prostate one of the main types of cancers witnessed in males; it has indeed been identified as the second type cancer leading to death in males. Accordingly, it has received considerable attention from the research community where computer scientists and data analysts are closely collaborating with pathologists to develop automated techniques and tools capable of classifying and identifying cancerous cases with high accuracy. These efforts are described in the literature in a large number of research articles which makes it hard and time consuming for researchers to grasp the current state of the art. Instead, review articles form a valuable source for researchers who are interesting in coping with the developments in the field. Generally, the literature includes several survey papers on prostate cancer; each of them tackles some aspect of the domain up to the time when the survey was prepared. Hence the need for the survey described in this paper which highlights the scope of each of the previous survey papers encountered in the literature and adds upon the latest developments in the field as described in more recent papers published mainly in 2023 and 2024. The survey focuses on the main artificial intelligence and machine learning techniques for diagnosing prostate cancer based on various types of data, including MRI. The most recent techniques employed in analyzing prostate cancer data, the various types of data, the available datasets, the reported results, etc. are all covered. This will help researchers in their efforts to keep track of the recent developments in the field and to realize the challenges which need more attention along the path towards developing robust and effect decision support systems for pathologists to have higher self confidence in handling their patients.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Sherif Mehralivand
    Dong Yang
    Stephanie A. Harmon
    Daguang Xu
    Ziyue Xu
    Holger Roth
    Samira Masoudi
    Deepak Kesani
    Nathan Lay
    Maria J. Merino
    Bradford J. Wood
    Peter A. Pinto
    Peter L. Choyke
    Baris Turkbey
    [J]. Abdominal Radiology, 2022, 47 : 1425 - 1434
  • [2] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Kesani, Deepak
    Lay, Nathan
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    [J]. ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1425 - 1434
  • [3] A new era: artificial intelligence and machine learning in prostate cancer
    S. Larry Goldenberg
    Guy Nir
    Septimiu E. Salcudean
    [J]. Nature Reviews Urology, 2019, 16 : 391 - 403
  • [4] A new era: artificial intelligence and machine learning in prostate cancer
    Goldenberg, S. Larry
    Nir, Guy
    Salcudean, Septimiu E.
    [J]. NATURE REVIEWS UROLOGY, 2019, 16 (07) : 391 - 403
  • [5] Guidelines for Quality Assurance of Machine Learning-Based Artificial Intelligence
    Fujii, Gaku
    Hamada, Koichi
    Ishikawa, Fuyuki
    Masuda, Satoshi
    Matsuya, Mineo
    Myojin, Tomoyuki
    Nishi, Yasuharu
    Ogawa, Hideto
    Toku, Takahiro
    Tokumoto, Susumu
    Tsuchiya, Kazunori
    Ujita, Yasuhiro
    [J]. INTERNATIONAL JOURNAL OF SOFTWARE ENGINEERING AND KNOWLEDGE ENGINEERING, 2020, 30 (11-12) : 1589 - 1606
  • [6] Artificial Intelligence and Machine Learning in Prostate Cancer Patient Management-Current Trends and Future Perspectives
    Tataru, Octavian Sabin
    Vartolomei, Mihai Dorin
    Rassweiler, Jens J.
    Virgil, Osan
    Lucarelli, Giuseppe
    Porpiglia, Francesco
    Amparore, Daniele
    Manfredi, Matteo
    Carrieri, Giuseppe
    Falagario, Ugo
    Terracciano, Daniela
    de Cobelli, Ottavio
    Busetto, Gian Maria
    Del Giudice, Francesco
    Ferro, Matteo
    [J]. DIAGNOSTICS, 2021, 11 (02)
  • [7] Deep learning-based artificial intelligence applications in prostate MRI: brief summary
    Turkbey, Baris
    Haider, Masoom A.
    [J]. BRITISH JOURNAL OF RADIOLOGY, 2022, 95 (1131):
  • [8] Artificial Intelligence and Machine Learning-Based System for Diagnosis of Chronic Hepatitis C
    Shergill, Annie
    Narasimhan, V. Lakshmi
    Budu, Emmanuella
    [J]. AMERICAN JOURNAL OF GASTROENTEROLOGY, 2021, 116 : S524 - S524
  • [9] Explainable Artificial Intelligence for Machine Learning-Based Photogrammetric Point Cloud Classification
    Atik, Muhammed Enes
    Duran, Zaide
    Seker, Dursun Zafer
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 5834 - 5846
  • [10] Machine Learning-Based Models Enhance the Prediction of Prostate Cancer
    Chen, Sunmeng
    Jian, Tengteng
    Chi, Changliang
    Liang, Yi
    Liang, Xiao
    Yu, Ying
    Jiang, Fengming
    Lu, Ji
    [J]. FRONTIERS IN ONCOLOGY, 2022, 12