EXISTENCE OF KINK WAVES TO PERTURBED DISPERSIVE K(3,1) EQUATION

被引:3
|
作者
Wei, Minzhi [1 ]
Li, Zizun [2 ]
机构
[1] Guangxi Univ Finance & Econ, Dept Appl Math, 100 Mingxiu West Rd, Nanning 530003, Peoples R China
[2] Nanning Normal Univ, Sch Math & Stat, Guangxi Key Lab Human Machine Interact & Intellig, 175 Mingxiu East Rd, Nanning 530001, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
Heteroclinic orbits; geometric singular perturbation theory; Melnikov function; SOLITARY WAVES; TRAVELING-WAVES; PERIODIC-WAVES; COMPACTONS;
D O I
10.11948/20210293
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper concerns on the existence problem of traveling wave solutions to perturbed dispersive K(3, 1) equation by using geometric singular perturbation technique. Based on the analogy between solitary wave solutions and heteroclinic orbits of the associated ordinary differential equations, kink and antikink waves persistent is concluded when the perturbed parameter is small sufficiently in perturbed nonlinear wave equation.
引用
收藏
页码:712 / 719
页数:8
相关论文
共 50 条