unstaggered central shcemes;
non-oscillatory;
nonuniform grids;
drift-flux model;
gas-liquid;
D O I:
10.1063/1.4951788
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper we extend a central finite volume method on nonuniform grids to the case of drift-flux two-phase flow problems. The numerical base scheme is an unstaggered, non oscillatory, second-order accurate finite volume scheme that evolves a piecewise linear numerical solution on a single grid and uses dual cells intermediately while updating the numerical solution to avoid the resolution of the Riemann problems arising at the cell interfaces. We then apply the numerical scheme and solve a classical drift-flux problem. The obtained results are in good agreement with corresponding ones appearing in the recent literature, thus confirming the potential of the proposed scheme.
机构:
Jeju Natl Univ, Res Inst Basic Sci, Dept Math & Informat, Cheju 690756, South KoreaJeju Natl Univ, Res Inst Basic Sci, Dept Math & Informat, Cheju 690756, South Korea
Jin, H.
Glimm, J.
论文数: 0引用数: 0
h-index: 0
机构:Jeju Natl Univ, Res Inst Basic Sci, Dept Math & Informat, Cheju 690756, South Korea
Glimm, J.
Sharp, D. H.
论文数: 0引用数: 0
h-index: 0
机构:Jeju Natl Univ, Res Inst Basic Sci, Dept Math & Informat, Cheju 690756, South Korea
机构:
Univ Poitiers, Lab Math & Applicat, CNRS, UMR 7348,SP2MI, Chasseneuil, Futuroscope, France
Romanian Acad, Inst Math, Bucharest, Romania
Romanian Acad, Inst Stat & Appl Math, Bucharest, RomaniaCzech Acad Sci, Inst Math, Prague, Czech Republic
Petcu, Madalina
Prazak, Dalibor
论文数: 0引用数: 0
h-index: 0
机构:
Charles Univ Prague, Dept Math Anal, Sokolovska 83, CZ-18675 Prague, Czech RepublicCzech Acad Sci, Inst Math, Prague, Czech Republic