Yet another look at positive linear operators, q-monotonicity and applications

被引:0
|
作者
Kopotun, K. A. [1 ]
Leviatan, D. [2 ]
Prymak, A. [1 ]
Shevchuk, I. A. [3 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, UA-01033 Kiev, Ukraine
基金
加拿大自然科学与工程研究理事会;
关键词
Positive linear operators; Degree of approximation; Jackson-type estimates; Moduli of smoothness; Gavrea's operator; Bernstein-Durrmeyer-Lupas polynomials with ultraspherical weights; APPROXIMATION;
D O I
10.1016/j.jat.2016.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each q is an element of N-0, we construct positive linear polynomial approximation operators M-n that simultaneously preserve k-monotonicity for all 0 <= k <= q and yield the estimate vertical bar f(x) - M-n(f, x)vertical bar <= c omega(phi lambda)(2) (f,n(-1)phi(1-lambda/2)(x) (phi(x) + 1/n)(-lambda/2)), for x is an element of [0, 1] and lambda is an element of [0, 2), where phi(x) := root x(1-x) and omega(psi)(2) is the second Ditzian-Totik modulus of smoothness corresponding to the "step-weight function" psi. In particular, this implies that the rate of best uniform q-monotone polynomial approximation can be estimated in terms of omega(psi)(2) (f, 1/n). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 28 条