Yet another look at positive linear operators, q-monotonicity and applications

被引:0
|
作者
Kopotun, K. A. [1 ]
Leviatan, D. [2 ]
Prymak, A. [1 ]
Shevchuk, I. A. [3 ]
机构
[1] Univ Manitoba, Dept Math, Winnipeg, MB R3T 2N2, Canada
[2] Tel Aviv Univ, Raymond & Beverly Sackler Sch Math Sci, IL-69978 Tel Aviv, Israel
[3] Taras Shevchenko Natl Univ Kyiv, Fac Mech & Math, UA-01033 Kiev, Ukraine
基金
加拿大自然科学与工程研究理事会;
关键词
Positive linear operators; Degree of approximation; Jackson-type estimates; Moduli of smoothness; Gavrea's operator; Bernstein-Durrmeyer-Lupas polynomials with ultraspherical weights; APPROXIMATION;
D O I
10.1016/j.jat.2016.06.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For each q is an element of N-0, we construct positive linear polynomial approximation operators M-n that simultaneously preserve k-monotonicity for all 0 <= k <= q and yield the estimate vertical bar f(x) - M-n(f, x)vertical bar <= c omega(phi lambda)(2) (f,n(-1)phi(1-lambda/2)(x) (phi(x) + 1/n)(-lambda/2)), for x is an element of [0, 1] and lambda is an element of [0, 2), where phi(x) := root x(1-x) and omega(psi)(2) is the second Ditzian-Totik modulus of smoothness corresponding to the "step-weight function" psi. In particular, this implies that the rate of best uniform q-monotone polynomial approximation can be estimated in terms of omega(psi)(2) (f, 1/n). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:1 / 22
页数:22
相关论文
共 28 条
  • [1] ON q-MONOTONICITY OF α-BERNSTEIN OPERATORS
    Gavrea, Bogdan
    Gavrea, Ioan
    Ianosi, Daniel
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2022, 25 (02): : 611 - 619
  • [2] On the q-Monotonicity Preservation of Durrmeyer-Type Operators
    Abel, Ulrich
    Leviatan, Dany
    Rasa, Ioan
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2021, 18 (04)
  • [3] On the q-Monotonicity Preservation of Durrmeyer-Type Operators
    Ulrich Abel
    Dany Leviatan
    Ioan Raşa
    Mediterranean Journal of Mathematics, 2021, 18
  • [4] On the monotonicity of positive linear operators
    Khan, MK
    Della Vecchia, B
    Fassih, A
    JOURNAL OF APPROXIMATION THEORY, 1998, 92 (01) : 22 - 37
  • [5] Yet another look at noninvasive positive-pressure ventilation
    Gabrielli, A
    Caruso, LJ
    Layon, AJ
    Antonelli, M
    CHEST, 2003, 124 (02) : 428 - 431
  • [7] On the strict monotonicity of spectral radii for classes of bounded positive linear operators
    Guiver, Chris
    POSITIVITY, 2018, 22 (04) : 1173 - 1190
  • [8] On the strict monotonicity of spectral radii for classes of bounded positive linear operators
    Chris Guiver
    Positivity, 2018, 22 : 1173 - 1190
  • [9] q-Laguerre type linear positive operators
    Ozarslan, Mehmet Ali
    STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA, 2007, 44 (01) : 65 - 80
  • [10] On the Construction of q-Analogues for some Positive Linear Operators
    Simsek, Ersin
    Tunc, Tuncay
    FILOMAT, 2017, 31 (13) : 4287 - 4295