A goodness-of-fit test for bivariate extreme-value copulas

被引:52
|
作者
Genest, Christian [1 ]
Kojadinovic, Ivan [2 ]
Neslehova, Johanna [3 ]
Yan, Jun [4 ]
机构
[1] Univ Laval, Dept Math & Stat, Quebec City, PQ G1V 0A6, Canada
[2] Univ Pau & Pays Adour, Lab Math & Applicat, CNRS, UMR 5142, F-64013 Pau, France
[3] McGill Univ, Dept Math & Stat, Montreal, PQ H3A 2K6, Canada
[4] Univ Connecticut, Dept Stat, Storrs, CT 06269 USA
基金
加拿大自然科学与工程研究理事会; 美国国家科学基金会;
关键词
extreme-value copula; goodness of fit; parametric bootstrap; Pickands dependence function; rank-based inference; NONPARAMETRIC-ESTIMATION; DEPENDENCE-FUNCTION; MULTIVARIATE; DISTRIBUTIONS; MODELS;
D O I
10.3150/10-BEJ279
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
It is often reasonable to assume that the dependence structure of a bivariate continuous distribution belongs to the class of extreme-value copulas. The latter are characterized by their Pickands dependence function. In this paper, a procedure is proposed for testing whether this function belongs to a given parametric fatuity. The test is based on a Cramer-von Mises statistic measuring the distance between an estimate of the parametric Pickands dependence function and either one of two nonparametric estimators thereof studied by Genest and Segers [Ann. Statist. 37 (2009) 2990-3022]. As the limiting distribution of the test statistic depends on unknown parameters, it must be estimated via a parametric bootstrap procedure, the validity of which is established. Monte Carlo simulations are used to assess the power of the test and an extension to dependence structures that are left-tail decreasing in both variables is considered.
引用
收藏
页码:253 / 275
页数:23
相关论文
共 50 条
  • [21] A new goodness-of-fit test for Type-I extreme-value and 2-parameter Weibull distributions with estimated parameters
    Liao, M
    Shimokawa, T
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 1999, 64 (01) : 23 - 48
  • [22] Powerful goodness-of-fit tests for the extreme value distribution
    Fard, Mir Nabi Pirouzi
    Holmquist, Bjorn
    [J]. CHILEAN JOURNAL OF STATISTICS, 2013, 4 (01): : 55 - 67
  • [23] Goodness-of-fit tests for type-I extreme-value and 2-parameter Weibull distributions
    Shimokawa, T
    Liao, M
    [J]. IEEE TRANSACTIONS ON RELIABILITY, 1999, 48 (01) : 79 - 86
  • [24] On a new goodness-of-fit process for families of copulas
    Mesfioui, Mhamed
    Quessy, Jean-Frangois
    Toupin, Marie-Helene
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2009, 37 (01): : 80 - 101
  • [25] A Non-parametric Test of Exchangeability for Extreme-Value and Left-Tail Decreasing Bivariate Copulas
    Kojadinovic, Ivan
    Yan, Jun
    [J]. SCANDINAVIAN JOURNAL OF STATISTICS, 2012, 39 (03) : 480 - 496
  • [26] Using B-splines for nonparametric inference on bivariate extreme-value copulas
    Cormier, Eric
    Genest, Christian
    Neslehova, Johanna G.
    [J]. EXTREMES, 2014, 17 (04) : 633 - 659
  • [27] Using B-splines for nonparametric inference on bivariate extreme-value copulas
    Eric Cormier
    Christian Genest
    Johanna G. Nešlehová
    [J]. Extremes, 2014, 17 : 633 - 659
  • [28] The spatial structure of European wind storms as characterized by bivariate extreme-value Copulas
    Bonazzi, A.
    Cusack, S.
    Mitas, C.
    Jewson, S.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2012, 12 (05) : 1769 - 1782
  • [29] A TEST OF GOODNESS-OF-FIT BASED ON EXTREME MULTINOMIAL CELL FREQUENCIES
    WELLS, MT
    JAMMALAMADAKA, SR
    TIWARI, RC
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1989, 18 (04) : 1527 - 1547
  • [30] Goodness-of-fit tests for the bivariate Poisson distribution
    Novoa-Munoz, Francisco
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2021, 50 (07) : 1998 - 2014