MULTI-SCALE FEATURE FUSION NETWORK FOR OBJECT DETECTION IN VHR OPTICAL REMOTE SENSING IMAGES

被引:2
|
作者
Zhang, Wenhua [1 ]
Jiao, Licheng [1 ]
Liu, Xu [1 ]
Liu, Jia [1 ]
机构
[1] Xidian Univ, Sch Artificial Intelligence, Minist Educ, Key Lab Intelligent Percept & Image Understanding, Xian 710071, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing images; object detection; very high resolution optical remote sensing images; convolutional neural networks; feature fusion;
D O I
10.1109/igarss.2019.8897842
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
In this paper, we propose a multi-scale feature fusion network (MS-FF Net) based on convolutional neural network (CNN) to deal with object detection in VHR images. In CNN, the low-level layers contain rich detail information and the high-level layers contain rich semantic information. Inspired by the idea of feature fusion, we propose an additional multi-scale feature fusion layer (MFL) to fuse the information between detail and semantic features. Then both large and small objects are considered by this network. Moreover, the network architecture and training strategies are designed to improve performance. Experiments on NWPU VHR-10 dataset demonstrate that the method with MFLs achieves significant improvement and outperforms compared methods in terms of mean average precision. Specially, the detection precision of airplane, baseball diamond, basketball court, ground track field and harbor categories exceeds 90% which is much higher than that of compared methods.
引用
下载
收藏
页码:330 / 333
页数:4
相关论文
共 50 条
  • [31] Multi-Modality and Multi-Scale Attention Fusion Network for Land Cover Classification from VHR Remote Sensing Images
    Lei, Tao
    Li, Linze
    Lv, Zhiyong
    Zhu, Mingzhe
    Du, Xiaogang
    Nandi, Asoke K.
    REMOTE SENSING, 2021, 13 (18)
  • [32] Multiscale Feature Adaptive Fusion for Object Detection in Optical Remote Sensing Images
    Lv, Hao
    Qian, Weixing
    Chen, Tianxiao
    Yang, Han
    Zhou, Xuecheng
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [33] Transformer-based multi-scale feature fusion network for remote sensing change detection
    Liang, Shike
    Hua, Zhen
    Li, Jinjiang
    JOURNAL OF APPLIED REMOTE SENSING, 2022, 16 (04)
  • [34] MFSFNet: Multi-Scale Feature Subtraction Fusion Network for Remote Sensing Image Change Detection
    Huang, Zhiqi
    You, Hongjian
    REMOTE SENSING, 2023, 15 (15)
  • [35] Remote sensing image change detection network with multi-scale feature information mining and fusion
    Songdong Xue
    Minming Zhang
    Gangzhu Qiao
    Chaofan Zhang
    Bin Wang
    Pattern Analysis and Applications, 2025, 28 (2)
  • [36] Remote sensing image target detection based on a multi-scale deep feature fusion network
    Fan X.
    Yan W.
    Shi P.
    Zhang X.
    National Remote Sensing Bulletin, 2022, 26 (11): : 2292 - 2303
  • [37] Improved Feature Fusion Network for Small Object Detection in Remote Sensing Images
    Li, Chao
    Wang, Kai
    Ding, Caichang
    Zhang, Jinyue
    Li, Jiabao
    Computer Engineering and Applications, 2023, 59 (17) : 232 - 241
  • [38] Pyramid attention object detection network with multi-scale feature fusion
    Chen, Xiu
    Li, Yujie
    Nakatoh, Yoshihisa
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [39] MULTI-SCALE OBJECT DETECTION WITH FEATURE FUSION AND REGION OBJECTNESS NETWORK
    Guan, Wenjie
    Zou, YueXian
    Zhou, Xiaoqun
    2018 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2018, : 2596 - 2600
  • [40] Multi-Scale Object Detection Using Feature Fusion Recalibration Network
    Guo, Ziyuan
    Zhang, Weimin
    Liang, Zhenshuo
    Shi, Yongliang
    Huang, Qiang
    IEEE ACCESS, 2020, 8 : 51664 - 51673